SDRSwin: A Residual Swin Transformer Network with Saliency Detection for Infrared and Visible Image Fusion

被引:1
作者
Li, Shengshi [1 ]
Wang, Guanjun [1 ,2 ]
Zhang, Hui [3 ]
Zou, Yonghua [1 ,2 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
[2] Hainan Univ, State Key Lab Marine Resource Utilizat South China, Haikou 570228, Peoples R China
[3] Hainan Univ, Sch Forestry, Key Lab Genet & Germplasm Innovat Trop Special For, Minist Educ, Haikou 570228, Peoples R China
基金
中国国家自然科学基金;
关键词
image fusion; saliency detection; residual Swin Transformer; infrared image; Hainan gibbon; INFORMATION MEASURE; PERFORMANCE; CLASSIFICATION;
D O I
10.3390/rs15184467
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Infrared and visible image fusion is a solution that generates an information-rich individual image with different modal information by fusing images obtained from various sensors. Salient detection can better emphasize the targets of concern. We propose a residual Swin Transformer fusion network based on saliency detection, termed SDRSwin, aiming to highlight the salient thermal targets in the infrared image while maintaining the texture details in the visible image. The SDRSwin network is trained with a two-stage training approach. In the first stage, we train an encoder-decoder network based on residual Swin Transformers to achieve powerful feature extraction and reconstruction capabilities. In the second stage, we develop a novel salient loss function to guide the network to fuse the salient targets in the infrared image and the background detail regions in the visible image. The extensive results indicate that our method has abundant texture details with clear bright infrared targets and achieves a better performance than the twenty-one state-of-the-art methods in both subjective and objective evaluation.
引用
收藏
页数:29
相关论文
共 56 条
[1]   Two-scale image fusion of visible and infrared images using saliency detection [J].
Bavirisetti, Durga Prasad ;
Dhuli, Ravindra .
INFRARED PHYSICS & TECHNOLOGY, 2016, 76 :52-64
[2]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[3]   A human perception inspired quality metric for image fusion based on regional information [J].
Chen, Hao ;
Varshney, Pramod K. .
INFORMATION FUSION, 2007, 8 (02) :193-207
[4]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[5]   Fusing Infrared and Visible Images of Different Resolutions via Total Variation Model [J].
Du, Qinglei ;
Xu, Han ;
Ma, Yong ;
Huang, Jun ;
Fan, Fan .
SENSORS, 2018, 18 (11)
[6]   Impending extinction crisis of the world's primates: Why primates matter [J].
Estrada, Alejandro ;
Garber, Paul A. ;
Rylands, Anthony B. ;
Roos, Christian ;
Fernandez-Duque, Eduardo ;
Di Fiore, Anthony ;
Nekaris, K. Anne-Isola ;
Nijman, Vincent ;
Heymann, Eckhard W. ;
Lambert, Joanna E. ;
Rovero, Francesco ;
Barelli, Claudia ;
Setchell, Joanna M. ;
Gillespie, Thomas R. ;
Mittermeier, Russell A. ;
Arregoitia, Luis Verde ;
de Guinea, Miguel ;
Gouveia, Sidney ;
Dobrovolski, Ricardo ;
Shanee, Sam ;
Shanee, Noga ;
Boyle, Sarah A. ;
Fuentes, Agustin ;
MacKinnon, Katherine C. ;
Amato, Katherine R. ;
Meyer, Andreas L. S. ;
Wich, Serge ;
Sussman, Robert W. ;
Pan, Ruliang ;
Kone, Inza ;
Li, Baoguo .
SCIENCE ADVANCES, 2017, 3 (01)
[7]   Texture clear multi-modal image fusion with joint sparsity model [J].
Gao, Zhisheng ;
Zhang, Chengfang .
OPTIK, 2017, 130 :255-265
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   Comments on 'Information measure for performance of image fusion' [J].
Hossny, M. ;
Nahavandi, S. ;
Creighton, D. .
ELECTRONICS LETTERS, 2008, 44 (18) :1066-U28
[10]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269