Modulating interfacial electronic coupling of copper-mediated NiFe layered double hydroxide nanoprisms via structural engineering for efficient OER in wireless photovoltaic-coupled and anion exchange membrane water electrolysis

被引:25
作者
Chanda, Debabrata [1 ,2 ]
Kwon, Hyunguk [3 ]
Meshesha, Mikiyas Mekete [1 ,2 ]
Gwon, Jang Seok [1 ,2 ]
Ju, Minkyu [4 ]
Kim, Kyeounghak [5 ]
Yang, Bee Lyong [1 ,2 ]
机构
[1] Kumoh Natl Inst Technol, Sch Adv Mat Sci & Engn, 61 Daehak Ro, Gumi Si 39177, Gyeongbuk, South Korea
[2] GHS Co Ltd, 61 Daehak Ro, Gumi Si 39177, Gyeongbuk, South Korea
[3] Seoul Natl Univ Sci & Technol, Dept Future Energy Convergence, Seoul 01811, South Korea
[4] Hyundai Energy Solut Co Ltd, Global R&D Ctr 9F, 477 Bundangsuseo Ro, Seongnam Si 13553, Gyeonggi Do, South Korea
[5] Hanyang Univ, Dept Chem Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2024年 / 340卷
基金
新加坡国家研究基金会;
关键词
CuNiFe-LDH nanoprism; Non-noble metal electrocatalyst; Oxygen evolution reaction; Photovoltaic-electrochemical cell system; Anion exchange membrane water electrolyzer; EVOLUTION REACTION; OXYGEN REDUCTION; ELECTROCATALYSTS; OXIDE; OXIDATION; NICKEL; CATALYSIS; ARRAYS; FOAM; CO;
D O I
10.1016/j.apcatb.2023.123187
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a facile method is used to fabricate Cu-mediated NiFe-LDH (CuNiFe-LDH) nanoprisms from conductive metal-organic frameworks (MOFs; NiFe MIL-88A). The initial MOF structure is stabilized by electronic coupling and Cu ion coordination. The CuNiFe-LDH nanoprisms exhibit excellent OER performance, with an overvoltage of 204 mV at a current density of 10 mA cm-2 and a low activation energy of 15.45 kJ mol-1. Mechanistic investigations using density functional theory calculations demonstrate that the Cu sites in CuNiFeLDH are highly efficient for OER and that CuNiFe-LDH has a lower theoretical overpotential than NiFe-LDH. A wireless photovoltaic-electrochemical cell, developed using a CuNiFe-LDH/Ni fiber paper (NFP) anode and NiFe2O4/NFPcathode, achieves a solar-to-hydrogen efficiency of 11.08%. Additionally, the excellent performance of anion exchange membrane water electrolyzer incorporating the CuNiFe-LDH catalyst, including a j of 974 mA cm-2 at 1.85 V, and 46.9 kWh of electricity consumed per 1 kg of hydrogen produced.
引用
收藏
页数:13
相关论文
共 74 条
[1]   Identifying high-efficiency oxygen evolution electrocatalysts from Co-Ni-Cu based selenides through combinatorial electrodeposition [J].
Cao, Xi ;
Johnson, Emily ;
Nath, Manashi .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (16) :9877-9889
[2]   Effect of the interfacial electronic coupling of nickel-iron sulfide nanosheets with layer Ti3C2 MXenes as efficient bifunctional electrocatalysts for anion-exchange membrane water electrolysis [J].
Chanda, Debabrata ;
Kannan, Karthik ;
Gautam, Jagadis ;
Meshesha, Mikiyas Mekete ;
Jang, Seok Gwon ;
Dinh, Van An ;
Yang, Bee Lyong .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 321
[3]   Optimization of synthesis of the nickel-cobalt oxide based anode electrocatalyst and of the related membrane-electrode assembly for alkaline water electrolysis [J].
Chanda, Debabrata ;
Hnat, Jaromir ;
Bystron, Tomas ;
Paidar, Martin ;
Bouzek, Karel .
JOURNAL OF POWER SOURCES, 2017, 347 :247-258
[4]   The effect of surface modification by reduced graphene oxide on the electrocatalytic activity of nickel towards the hydrogen evolution reaction [J].
Chanda, Debabrata ;
Hnat, Jaromir ;
Dobrota, Ana S. ;
Pasti, Igor A. ;
Paidar, Martin ;
Bouzek, Karel .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (40) :26864-26874
[5]   Synthesis and characterization of NiFe2O4 electrocatalyst for the hydrogen evolution reaction in alkaline water electrolysis using different polymer binders [J].
Chanda, Debabrata ;
Hnat, Jaromir ;
Paidar, Martin ;
Schauer, Jan ;
Bouzek, Karel .
JOURNAL OF POWER SOURCES, 2015, 285 :217-226
[6]   3D Nitrogen-Anion-Decorated Nickel Sulfides for Highly Efficient Overall Water Splitting [J].
Chen, Pengzuo ;
Zhou, Tianpei ;
Zhang, Mengxing ;
Tong, Yun ;
Zhong, Chengan ;
Zhang, Nan ;
Zhang, Lidong ;
Wu, Changzheng ;
Xie, Yi .
ADVANCED MATERIALS, 2017, 29 (30)
[7]   Ultrathin Prussian blue analogue nanosheet arrays with open bimetal centers for efficient overall water splitting [J].
Chen, Ziliang ;
Fei, Ben ;
Hou, Meiling ;
Yan, Xiaoxiao ;
Chen, Mao ;
Qing, Huilin ;
Wu, Renbing .
NANO ENERGY, 2020, 68
[8]   Copper(II) Catalysis of Water Oxidation [J].
Chen, Zuofeng ;
Meyer, Thomas J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (02) :700-703
[9]   Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis [J].
Cheng, Weiren ;
Zhao, Xu ;
Su, Hui ;
Tang, Fumin ;
Che, Wei ;
Zhang, Hui ;
Liu, Qinghua .
NATURE ENERGY, 2019, 4 (02) :115-122
[10]   Hollow Carbon Nanofibers with Inside-outside Decoration of Bi-metallic MOF Derived Ni-Fe Phosphides as Electrode Materials for Asymmetric Supercapacitors [J].
Chhetri, Kisan ;
Kim, Taewoo ;
Acharya, Debendra ;
Muthurasu, Alagan ;
Dahal, Bipeen ;
Bhattarai, Roshan Mangal ;
Lohani, Prakash Chandra ;
Pathak, Ishwor ;
Ji, Seongmin ;
Ko, Tae Hoon ;
Kim, Hak Yong .
CHEMICAL ENGINEERING JOURNAL, 2022, 450