Complex curves in hypercomplex nilmanifolds with H-solvable Lie algebras

被引:0
作者
Gorginyan, Yulia [1 ,2 ]
机构
[1] Inst Nacl Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] Natl Res Univ HSE, Dept Math, Lab Algebra Geometry, 6 Usacheva Str, Moscow, Russia
关键词
Nilmanifold; Hypercomplex structure; Complex curve; Nilpotent Lie algebra; Twistor bundle; COHOMOLOGY; KAHLER;
D O I
10.1016/j.geomphys.2023.104900
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An operator I on a real Lie algebra g is called a complex structure operator if I2 = - Id and the & RADIC;-1-eigenspace g1,0 is a Lie subalgebra in the complexification of g. A hypercomplex structure on a Lie algebra g is a triple of complex structures I, J and K on g satisfying the quaternionic relations. We call a hypercomplex nilpotent Lie algebra H-solvable if there exists a sequence of H-invariant subalgebras g 1 & SUP; g 2 & SUP; & BULL;& BULL;& BULL; & SUP; g k-1 & SUP; g k =0, such that [gi, gi] & SUB; gi+1. We give examples of H-solvable hypercomplex structures on a nilpotent Lie algebra and conjecture that all hypercomplex structures on nilpotent Lie algebras are H-solvable. Let (N, I, J, K) be a compact hypercomplex nilmanifold associated to an H-solvable hypercomplex Lie algebra. We prove that, for a general complex structure L induced by quaternions, there are no complex curves in a complex manifold (N, L).& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 21 条
[1]  
Abasheva A, 2021, Arxiv, DOI [arXiv:2103.05528, 10.48550/arXiv.2103.05528, DOI 10.48550/ARXIV.2103.05528]
[2]   Complex structures on affine motion groups [J].
Barberis, ML ;
Dotti, IG .
QUARTERLY JOURNAL OF MATHEMATICS, 2004, 55 :375-389
[3]   KAHLER AND SYMPLECTIC STRUCTURES ON NILMANIFOLDS [J].
BENSON, C ;
GORDON, CS .
TOPOLOGY, 1988, 27 (04) :513-518
[4]  
Besse, 2008, EINSTEIN MANIFOLDS
[5]  
Corwin L. J., 1990, REPRESENTATIONS NI 1
[6]   MINIMAL MODELS OF NILMANIFOLDS [J].
HASEGAWA, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (01) :65-71
[7]  
Hasegawa K, 2005, J SYMPLECT GEOM, V3, P749
[8]  
Kaledin Kal D., 1998, SELECTA MATH, V4, P271
[9]  
Mal'cev A. I., 1949, IZV AKAD NAUK SSSR M, V13, P201
[10]  
Maltsev A.I., 1949, Izv. Akad. Nauk SSSR, Ser. Mat., V13, P9