Failure Mechanism, Electrolyte Design, and Electrolyte/Electrode Interface Regulation for Low-Temperature Zinc-Based Batteries

被引:16
作者
Zhang, Weiqi [1 ,2 ]
Dong, Qiujiang [2 ]
Wang, Jiajun [2 ]
Han, Xiaopeng [2 ]
Hu, Wenbin [1 ,2 ]
机构
[1] Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus Tianjin Univ, Fuzhou 350207, Peoples R China
[2] Tianjin Univ, Sch Mat Sci & Engn, Tianjin Key Lab Composite & Funct Mat, Key Lab Adv Ceram & Machining Technol,Minist Educ, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
electrolyte; electrode interface regulation; failure mechanisms; low-temperature electrolytes; zinc-based batteries; LITHIUM-ION BATTERIES; ELECTRICAL ENERGY-STORAGE; DEEP EUTECTIC SOLVENTS; PERFORMANCE; INTERPHASE; CATHODE; CATION; HYBRID; ANODE; BORAX;
D O I
10.1002/smtd.202300324
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With more renewable energy developed to satisfy the human need in the energy crisis, electricity storage is critical in power utilization and storage. Due to its high safety, high nature reserve, and high energy density, the zinc-based battery is drawing increasing attention. Together with the expansion of human activities, the low-temperature battery is developed to satisfy the power demand in extreme environments, and as a critical component, electrolytes shall have a low freezing point and satisfying electrochemical properties in cold conditions. In this review, the development of low-temperature electrolytes for zinc-based batteries will be comprehensively introduced. First, the failure mechanism of zinc-based battery at low temperature will be illustrated. Second, five main types of low-temperature electrolytes will be introduced in detail. Finally, the regulation of electrolyte/electrode surface at low temperature will be discussed. This review aims to provide a guideline for low-temperature electrolyte design from the perspective of molecular behavior regulation.
引用
收藏
页数:19
相关论文
共 136 条
[1]   Eutectic-based ionic liquids with metal-containing anions and cations [J].
Abbott, Andrew P. ;
Barron, John C. ;
Ryder, Karl S. ;
Wilson, David .
CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (22) :6495-6501
[2]   Zinc (II) chloride-based deep eutectic solvents for application as electrolytes: Preparation and characterization [J].
Bagh, Fatemeh S. Ghareh ;
Shahbaz, Kaveh ;
Mjalli, Farouq S. ;
Hashim, Mohd A. ;
AlNashef, Inas M. .
JOURNAL OF MOLECULAR LIQUIDS, 2015, 204 :76-83
[3]   A critical review on lithium-air battery electrolytes [J].
Balaish, Moran ;
Kraytsberg, Alexander ;
Ein-Eli, Yair .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (07) :2801-2822
[4]   Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors [J].
Barzegar, Farshad ;
Dangbegnon, Julien K. ;
Bello, Abdulhakeem ;
Momodu, Damilola Y. ;
Johnson, A. T. Charlie, Jr. ;
Manyala, Ncholu .
AIP ADVANCES, 2015, 5 (09)
[5]   On battery materials and methods [J].
Borah, R. ;
Hughson, F. R. ;
Johnston, J. ;
Nann, T. .
MATERIALS TODAY ADVANCES, 2020, 6
[6]   Innovative zinc-based batteries [J].
Borchers, Niklas ;
Clark, Simon ;
Horstmann, Birger ;
Jayasayee, Kaushik ;
Juel, Mari ;
Stevens, Philippe .
JOURNAL OF POWER SOURCES, 2021, 484
[7]   Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic-Zincophobic Interfacial Layers and Interrupted Hydrogen-Bond Electrolytes [J].
Cao, Longsheng ;
Li, Dan ;
Soto, Fernando A. ;
Ponce, Victor ;
Zhang, Bao ;
Ma, Lu ;
Deng, Tao ;
Seminario, Jorge M. ;
Hu, Enyuan ;
Yang, Xiao-Qing ;
Balbuena, Perla B. ;
Wang, Chunsheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (34) :18845-18851
[8]   An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices [J].
Chang, Nana ;
Li, Tianyu ;
Li, Rui ;
Wang, Shengnan ;
Yin, Yanbin ;
Zhang, Huamin ;
Li, Xianfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3527-3535
[9]   Improving Electrochemical Stability and Low-Temperature Performance with Water/Acetonitrile Hybrid Electrolytes [J].
Chen, Jiawei ;
Vatamanu, Jenel ;
Xing, Lidan ;
Borodin, Oleg ;
Chen, Huiyang ;
Guan, Xiongcong ;
Liu, Xiang ;
Xu, Kang ;
Li, Weishan .
ADVANCED ENERGY MATERIALS, 2020, 10 (03)
[10]   Anti-freezing flexible aqueous Zn-MnO2 batteries working at-35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte [J].
Chen, Minfeng ;
Zhou, Weijun ;
Wang, Anran ;
Huang, Aixiang ;
Chen, Jizhang ;
Xu, Junling ;
Wong, Ching-Ping .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (14) :6828-6841