Topological gauge fields and the composite particle duality

被引:0
|
作者
Valenti-Rojas, Gerard [1 ]
Baker, Aneirin J. [1 ]
Celi, Alessio [2 ]
Ohberg, Patrik [1 ]
机构
[1] Heriot Watt Univ, Inst Photon & Quantum Sci, SUPA, Edinburgh EH14 4AS, Scotland
[2] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Spain
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
QUANTUM-MECHANICS; FRACTIONAL-SPIN; BOSONIZATION; OPERATORS; ALGEBRA; SYSTEMS; GAS;
D O I
10.1103/PhysRevResearch.5.023128
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We unveil a duality that extends the notions of both flux attachment and statistical transmutation in spacetime dimensions beyond (2+1)D. Thus, a quantum system in arbitrary dimensions can experience a modification of its statistical properties if coupled to a certain gauge field. For instance, a bosonic quantum fluid can feature composite fermionic (or anyonic) excitations when coupled to a statistical gauge field. We compute the explicit form of the aforementioned synthetic gauge fields in D 3 + 1. We introduce a bosonic liquid and its composite dual in (1+1)D as proof of principle. We recover well-known results, resolve old controversies, and suggest a microscopic mechanism for the emergence of such a gauge field. We also outline potential directions for experimental realizations in ultracold atom platforms.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On duality of injective topological module
    Salih, Marrwa Abdallah
    Majeed, Taghreed Hur
    Nayef, Mahdi Saleh
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (05) : 1409 - 1414
  • [2] Sudakov scaling and the gauge/string duality
    Gorsky, A. S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 150 (02) : 175 - 186
  • [3] Spinning particle interacting with electromagnetic and antisymmetric gauge fields in anti-de Sitter space
    Uvarov, D. V.
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (05):
  • [4] Gauge theory of topological phases of matter
    Froehlich, Juerg
    Werner, Philipp
    EPL, 2013, 101 (04)
  • [5] Topological invariants for gauge theories and symmetry-protected topological phases
    Wang, Chenjie
    Levin, Michael
    PHYSICAL REVIEW B, 2015, 91 (16):
  • [6] T[SU(N)] duality webs: mirror symmetry, spectral duality and gauge/CFT correspondences
    Nedelin, Anton
    Pasquetti, Sara
    Zenkevich, Yegor
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)
  • [7] Ausoni-Bokstedt duality for topological Hochschild homology
    Greenlees, J. P. C.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (04) : 1382 - 1402
  • [8] A topological duality for tense LMn-algebras and applications
    Figallo, Aldo V.
    Pascual, Ines
    Pelaitay, Gustavo
    LOGIC JOURNAL OF THE IGPL, 2018, 26 (04) : 339 - 380
  • [9] Topological vortices in chiral gauge theory of graphene
    Liu, Xin
    Zhang, Ruibin
    ANNALS OF PHYSICS, 2010, 325 (02) : 384 - 391
  • [10] Spanier-Whitehead duality for topological coHochschild homology
    Bayindir, Haldun Ozgor
    Peroux, Maximilien
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (05): : 1780 - 1822