Machine Learning-Based Design of Ionic Liquids at the Atomic Scale for Highly Efficient CO2 Capture

被引:9
作者
Liu, Xiangyang [1 ]
Chu, Jianchun [1 ]
Huang, Shaoxuan [1 ]
Li, An [1 ]
Wang, Shuanlai [1 ]
He, Maogang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermal Fluid Sci & Engn MOE, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; capture; ionic liquid; machinelearning; molecular design; process simulation; RENEWABLE ENERGY-SOURCES; SOLUBILITY; ABSORPTION; TECHNOLOGIES; DATABASE;
D O I
10.1021/acssuschemeng.3c01191
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ionic liquids (ILs) are considered excellent substitutesfor aqueousalkanolamine solutions in CO2 capture systems. However,the smart design of ILs, facing the small sparse data set and complexionic structures, poses a huge challenge. To address this issue, anovel machine learning method based on a syntax-directed variationalautoencoder (SDVAE), deep factorization machine (DeepFM), and gradient-basedparticle swarm optimization (GBPSO) was proposed in this work. TheSDVAE converts the molecular structure and chemical space of the ILs,and then DeepFM predicts the solubility of each coordinate in thechemical space representing an IL. Finally, GBPSO identifies the coordinatesthat represent ILs with ideal properties. Our main optimization objectiveis a high solubility difference for CO2 between its absorptionand desorption conditions in commercial plant capture systems, whichrepresents the CO2 capture ability. The best IL generatedhas a predicted solubility difference that is 35.3% higher than thatof the best one in the data set. A synthetic novel IL [EMIM][TOS]from the generated results was experimentally evaluated; it has asufficiently high solubility difference to be a capture solvent withlow energy consumption. Our model has proved to be a high-efficiencymolecular design model that can be used for sparse small data sets. Ionic liquids are promising alternativesolvents of alkanolaminesolutions for CO2 capture. This work establishes a reliabledesign method at the atomic scale to improve CO2 captureability.
引用
收藏
页码:8978 / 8987
页数:10
相关论文
共 53 条
[1]   A systematic review on CO2 capture with ionic liquids: Current status and future prospects [J].
Aghaie, Mahsa ;
Rezaei, Nima ;
Zendehboudi, Sohrab .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 96 :502-525
[2]   Solubility of gases in ionic liquids using PHTC equation of state [J].
Akbari, Falamarz ;
ALmutairi, Faisal Dahi ;
Alavianmehr, Mohammad Mehdi .
JOURNAL OF MOLECULAR LIQUIDS, 2019, 276 :553-561
[3]  
Bickerton GR, 2012, NAT CHEM, V4, P90, DOI [10.1038/NCHEM.1243, 10.1038/nchem.1243]
[4]   Automated Generation of Novel Fragments Using Screening Data, a Dual SMILES Autoencoder, Transfer Learning and Syntax Correction [J].
Bilsland, Alan E. ;
McAulay, Kirsten ;
West, Ryan ;
Pugliese, Angelo ;
Bower, Justin .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (06) :2547-2559
[5]   Application of Generative Autoencoder in De Novo Molecular Design [J].
Blaschke, Thomas ;
Olivecrona, Marcus ;
Engkvist, Ola ;
Bajorath, Jurgen ;
Chen, Hongming .
MOLECULAR INFORMATICS, 2018, 37 (1-2)
[6]   PaccMannRL: De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning [J].
Born, Jannis ;
Manica, Matteo ;
Oskooei, Ali ;
Cadow, Joris ;
Markert, Greta ;
Martinez, Maria Rodriguez .
ISCIENCE, 2021, 24 (04)
[7]   GuacaMol: Benchmarking Models for de Novo Molecular Design [J].
Brown, Nathan ;
Fiscato, Marco ;
Segler, Marwin H. S. ;
Vaucher, Alain C. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) :1096-1108
[8]   Estimating the solubility of HFC/HFO in ionic liquids from molecular structure using machine learning method [J].
Chu, Jianchun ;
Zhang, Ziwen ;
Liu, Xiangyang ;
He, Maogang .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 184 :315-325
[9]   Ionic Liquid-Polymer Composites: A New Platform for Multifunctional Applications [J].
Correia, Daniela Maria ;
Fernandes, Liliana Correia ;
Martins, Pedro Manuel ;
Garcia-Astrain, Clara ;
Costa, Carlos Miguel ;
Reguera, Javier ;
Lanceros-Mendez, Senentxu .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (24)
[10]   Active chemisorption sites in functionalized ionic liquids for carbon capture [J].
Cui, Guokai ;
Wang, Jianji ;
Zhang, Suojiang .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (15) :4307-4339