Copper-based metal-organic frameworks for CO2 reduction: selectivity trends, design paradigms, and perspectives

被引:17
|
作者
Nwosu, Ugochukwu [1 ]
Siahrostami, Samira [1 ]
机构
[1] Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada
关键词
CARBON-DIOXIDE REDUCTION; ELECTROCHEMICAL REDUCTION; SINGLE-CRYSTAL; ELECTROCATALYTIC CONVERSION; THEORETICAL INSIGHTS; CHARGE-TRANSFER; CU; ELECTROREDUCTION; METHANE; SURFACE;
D O I
10.1039/d3cy00408b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Can the carbon budget be balanced? Increasing greenhouse gas emissions and worsening environmental effects demand that humankind find a solution for anthropogenic climate change. As a carbon recycling strategy, the electrochemical carbon dioxide reduction reaction (CO2RR) represents a platform to convert CO2 to valuable chemicals. Despite the discovery that copper uniquely produces hydrocarbons, a lack of suitable catalysts prevents the realization of industrial-scale applications. Recently, metal-organic frameworks (MOFs), extended networks of organic ligands and metal nodes or clusters, have found application as electrocatalysts. Perhaps, this class of materials can be leveraged to tune the properties of copper and yield a suitable CO2RR catalyst. In this review, we present new developments in the application of copper-based MOFs (Cu MOFs) for CO2RR. Firstly, we highlight the potential of CO2RR as a solution for carbon neutrality and proceed by overviewing CO2RR mechanisms and catalysts. We then emphasize the role of copper which leads to our discussion of the trends in Cu MOFs for CO2RR. We conclude by presenting several challenges and perspectives relevant to Cu MOFs in the hope of spurring targeted research in the field.
引用
收藏
页码:3740 / 3761
页数:22
相关论文
共 50 条
  • [1] Copper-based metal-organic frameworks for electrochemical reduction of CO2
    Kang, Xiaomin
    Fu, Guodong
    Fu, Xian-Zhu
    Luo, Jing-Li
    CHINESE CHEMICAL LETTERS, 2023, 34 (06)
  • [2] Copper-based metal-organic frameworks for electrochemical reduction of CO2
    Xiaomin Kang
    Guodong Fu
    Xian-Zhu Fu
    Jing-Li Luo
    ChineseChemicalLetters, 2023, 34 (06) : 141 - 150
  • [3] Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols
    Albo, Jonathan
    Vallejo, Daniel
    Beobide, Garikoitz
    Castillo, Oscar
    Castano, Pedro
    Irabien, Angel
    CHEMSUSCHEM, 2017, 10 (06) : 1100 - 1109
  • [4] Boosting Electrochemical CO2 Reduction on Copper-Based Metal-Organic Frameworks via Valence and Coordination Environment Modulation
    Deng, Jun
    Qiu, Limei
    Xin, Mudi
    He, Wenhui
    Zhao, Wenhui
    Dong, Juncai
    Xu, Guangtong
    SMALL, 2024, 20 (27)
  • [5] Amine-functionalized copper-based Metal-Organic frameworks (MOFs) adsorbent for CO2 capture
    Daud, N. K.
    Najib, N. H. I. M.
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2025,
  • [6] In Situ Synthesis of Copper-Based Metal-Organic Frameworks with Ligand Defects for Electrochemical Reduction of CO2 into C2 Products
    Wu, Xin-Yu
    Li, Zhi-Yuan
    Zhang, Man-Lian
    Lu, Jian-Feng
    Zhu, Zi-Hao
    Zhao, Jian
    Liu, Sui-Jun
    Wen, He-Rui
    INORGANIC CHEMISTRY, 2024, 63 (42) : 19897 - 19905
  • [7] Metal-organic frameworks based materials for photocatalytic CO2 reduction
    Crake, Angus
    MATERIALS SCIENCE AND TECHNOLOGY, 2017, 33 (15) : 1737 - 1749
  • [8] Copper-based metal-organic frameworks for biomedical applications
    Cun, Ju-E
    Fan, Xi
    Pan, Qingqing
    Gao, Wenxia
    Luo, Kui
    He, Bin
    Pu, Yuji
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2022, 305
  • [9] Advances of copper-based metal-organic frameworks and their derivatives in nitrate reduction to ammonia
    Xu, Honglin
    Shi, Feng
    Du, Jinbao
    Xu, Sen
    Wang, Kaichen
    Wang, Jinguo
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (02):
  • [10] Copper-based metal-organic frameworks for antitumor application
    Qian, Yangwei
    Wang, Chenxi
    Xu, Ruru
    Wang, Jin
    Chen, Qinyue
    Zhu, Zirui
    Hu, Quan
    Shen, Qiying
    Shen, Jia-Wei
    JOURNAL OF NANOBIOTECHNOLOGY, 2025, 23 (01)