Singular Integrals with Variable Kernels in Dyadic Settings

被引:1
作者
Aimar, Hugo [1 ,2 ]
Crescimbeni, Raquel [3 ,4 ]
Nowak, Luis [3 ,4 ]
机构
[1] IMAL CONICET, Santa Fe, Argentina
[2] UNL, Santa Fe, Argentina
[3] UNCo, Dept Matemat, FaEA, Neuquen, Argentina
[4] IITCI CONICET, Neuquen, Argentina
关键词
Singular integrals; spaces of homogeneous type; Petermichl's operator; Haar basis; HAAR BASES; SPACES; CALDERON;
D O I
10.1007/s10114-023-1254-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we explore conditions on variable symbols with respect to Haar systems, defining Calderon-Zygmund type operators with respect to the dyadic metrics associated to the Haar bases. We show that Petermichl's dyadic kernel can be seen as a variable kernel singular integral and we extend it to dyadic systems built on spaces of homogeneous type.
引用
收藏
页码:1565 / 1579
页数:15
相关论文
共 17 条
[1]  
Aimar H., 2020, ARXIV
[2]   Multiresolution approximations and unconditional bases on weighted Lebesgue spaces on spaces of homogeneous type [J].
Aimar, Hugo ;
Bernardis, Ana ;
Iaffei, Bibiana .
JOURNAL OF APPROXIMATION THEORY, 2007, 148 (01) :12-34
[3]   On the Calderon-Zygmund structure of Petermichl's kernel [J].
Aimar, Hugo ;
Gomez, Ivana .
COMPTES RENDUS MATHEMATIQUE, 2018, 356 (05) :509-516
[4]   Equivalence of Haar Bases Associated with Different Dyadic Systems [J].
Aimar, Hugo ;
Bernardis, Ana ;
Nowak, Luis .
JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (02) :288-304
[5]  
Aimar Hugo, 1983, THESIS U NACL BUENOS
[6]   ON THE EXISTENCE OF CERTAIN SINGULAR INTEGRALS [J].
CALDERON, AP ;
ZYGMUND, A .
ACTA MATHEMATICA, 1952, 88 (03) :85-139
[7]  
CALDERON AP, 1978, APPL ANAL, V7, P221
[8]  
Christ Michael., 1990, COLLOQ MATH-WARSAW, V60/61, P601
[9]  
Coifman R., 1971, Analyse Harmonique Non-commutative Sur Certains Espaceshomognes. Lecture Notes in Mathematics, V242, DOI [10.1007/BFb0058946, DOI 10.1007/BFB0058946]
[10]  
David G., 1991, AUSDELA GRAPHES LIPS, V193