Existence of the stationary Navier-Stokes flow in R2 around a radial flow

被引:4
作者
Maekawa, Yasunori [1 ]
Tsurumi, Hiroyuki [1 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto 6068502, Japan
关键词
EQUATIONS; STABILITY;
D O I
10.1016/j.jde.2022.12.043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the stationary Navier-Stokes equations on the whole plane R2. We show that for a given small and smooth external force around a radial flow, there exists a classical solution decaying like |x|-1. In our result, it is not necessary to impose any symmetric conditions on external forces. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:202 / 227
页数:26
相关论文
共 23 条
[2]   LN SOLUTIONS OF THE STATIONARY AND NONSTATIONARY NAVIER-STOKES EQUATIONS IN RN [J].
CHEN, ZM .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 158 (02) :293-303
[3]   ON STATIONARY SOLUTIONS OF NAVIER-STOKES EQUATIONS IN 2 DIMENSIONS [J].
FINN, R ;
SMITH, DR .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 25 (01) :26-&
[4]  
Galdi G.-P., 2015, GAKUTO Internat. Ser. Math. Sci. Appl., V37, P135
[5]   ON THE ASYMPTOTIC STRUCTURE OF PLANE STEADY, FLOW OF A VISCOUS-FLUID IN EXTERIOR DOMAINS [J].
GALDI, GP ;
SOHR, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 131 (02) :101-119
[6]   On stationary two-dimensional flows around a fast rotating disk [J].
Gallagher, Isabelle ;
Higaki, Mitsuo ;
Maekawa, Yasunori .
MATHEMATISCHE NACHRICHTEN, 2019, 292 (02) :273-308
[7]  
Guillod J, 2015, Arxiv, DOI arXiv:1511.03938
[8]   Asymptotic behaviour of solutions to the stationary Navier-Stokes equations in two-dimensional exterior domains with zero velocity at infinity [J].
Guillod, Julien ;
Wittwer, Peter .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (02) :229-253
[9]   GENERALIZED SCALE-INVARIANT SOLUTIONS TO THE TWO-DIMENSIONAL STATIONARY NAVIER-STOKES EQUATIONS [J].
Guillod, Julien ;
Wittwer, Peter .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (01) :955-968
[10]  
HEYWOOD JG, 1970, ARCH RATION MECH AN, V37, P48