Electrochemical Co-reduction of N2 and CO2 to Urea Using Bi2S3 Nanorods Anchored to N-Doped Reduced Graphene Oxide

被引:25
作者
Xing, Pingxing [1 ]
Wei, Shenqi [1 ]
Zhang, Yulu [1 ]
Chen, Xinyi [1 ]
Dai, Liyi [1 ,2 ]
Wang, Yuanyuan [1 ,2 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Green Chem & Green Proc, Shanghai 200241, Peoples R China
[2] Inst Ecochongming, Shanghai 202162, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
N-doped reduced graphene oxide; N2 and CO2 adsorption and activation; electrocatalytic synthesis of urea; couple C-N bond; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; AMMONIA-SYNTHESIS; NITRITE IONS; 3D GRAPHENE; N-2; EFFICIENT; PERFORMANCE; CONVERSION; COMPOSITE;
D O I
10.1021/acsami.3c01405
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Producing "green urea" using renewable energy, N2, and CO2 is a long-considered challenge. Herein, an electrocatalyst, Bi2S3/N-reduced graphene oxide (RGO), was synthesized by loading the Bi2S3 nanorods onto the N-RGO via a hydrothermal method. The Bi2S3/N-RGO composites exhibit the highest yield of urea (4.4 mmol g-1 h-1), which is 12.6 and 3.1 times higher than that of Bi2S3 (0.35 mmol g-1 h-1) and that of N-RGO (1.4 mmol g-1 h-1), respectively. N-RGO, because of its porous and open-layer structure, improves the mass transfer efficiency and stability, while the basic groups (-OH and-NH2) promote the adsorption and activation of CO2. Bi2S3 promotes the absorption and activation of inert N2. Finally, the defect sites and the synergistic effect on the Bi2S3/N-RGO composites work simultaneously to form urea from N2 and CO2. This study provides new insights into urea synthesis under ambient conditions and a strategy for the design and development of a new material for green urea synthesis.
引用
收藏
页码:22101 / 22111
页数:11
相关论文
共 50 条
  • [1] Electrochemical co-reduction of N2 and CO2 to urea using In2S3 anchored on S-doped reduced graphene oxide
    Chen, Xinyi
    Xing, Pingxing
    Wei, Shenqi
    Luo, Hualan
    Dai, Liyi
    Wang, Yuanyuan
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 969
  • [2] Molecularly dispersed nickel complexes on N-doped graphene for electrochemical CO2 reduction
    Juthathan, Methasit
    Chantarojsiri, Teera
    Chainok, Kittipong
    Butburee, Teera
    Thamyongkit, Patchanita
    Tuntulani, Thawatchai
    Leeladee, Pannee
    DALTON TRANSACTIONS, 2023, 52 (33) : 11407 - 11418
  • [3] Photocatalytic Co-Reduction of N2 and CO2 with CeO2 Catalyst for Urea Synthesis
    Yang, Shuyi
    Zhang, Wensheng
    Pan, Guoliang
    Chen, Jiaying
    Deng, Jiayi
    Chen, Ke
    Xie, Xianglun
    Han, Dongxue
    Dai, Mengjiao
    Niu, Li
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (43)
  • [4] Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts
    Yuan, Jing
    Yang, Man-Ping
    Zhi, Wen-Ya
    Wang, Hui
    Wang, Huan
    Lu, Jia-Xing
    JOURNAL OF CO2 UTILIZATION, 2019, 33 : 452 - 460
  • [5] Electrocatalytic reduction of CO2 with N/B co-doped reduced graphene oxide based catalysts
    Cerrillo, Maria Isabel
    Jimenez, Carlos
    Ortiz, Miguel Aengel
    Camarillo, Rafael
    Rincon, Jesusa
    Martinez, Fabiola
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 127 : 101 - 109
  • [6] Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate
    Sun, Junjie
    Zheng, Wanzhen
    Lyu, Siliu
    He, Feng
    Yang, Bin
    Li, Zhongjian
    Lei, Lecheng
    Hou, Yang
    CHINESE CHEMICAL LETTERS, 2020, 31 (06) : 1415 - 1421
  • [7] N-doped reduced graphene oxide promoted nano TiO2 as a bifunctional adsorbent/photocatalyst for CO2 photoreduction: Effect of N species
    Lin, Liang-Yi
    Nie, Yao
    Kavadiya, Shalinee
    Soundappan, Thiagarajan
    Biswas, Pratim
    CHEMICAL ENGINEERING JOURNAL, 2017, 316 : 449 - 460
  • [8] Electrochemical Reduction of N2 to NH3 Using a Co-Atom Stabilized on Defective N-Doped Graphene: A Computational Study
    Saeidi, Nasibeh
    Esrafili, Mehdi D.
    Sardroodi, Jaber Jahanbin
    CHEMISTRYSELECT, 2019, 4 (42): : 12216 - 12226
  • [9] Bi2O3 microspheres combined electron-deficient B-reduced graphene oxide as functional electrocatalyst for effective synthesis urea from N2 and CO2
    Xing, Pingxing
    Wei, Shenqi
    Chen, Xinyi
    Luo, Hualan
    Dai, Liyi
    Wang, Yuanyuan
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [10] Realizing efficient C-N coupling via electrochemical co-reduction of CO2 and NO3- on AuPd nanoalloy to form urea: Key C-N coupling intermediates
    Wang, Hua
    Jiang, Yong
    Li, Sijun
    Gou, Fenglin
    Liu, Xiaorui
    Jiang, Yimin
    Luo, Wei
    Shen, Wei
    He, Rongxing
    Li, Ming
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 318