First-principles study of enhancement of perpendicular magnetic anisotropy obtained by inserting an ultrathin LiF layer at an Fe/MgO interface

被引:3
作者
Kitaoka, Yukie [1 ]
Imamura, Hiroshi [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan
关键词
Magnetic anisotropy; Magnetic tunnel junction; Magnetoresistive random access memory; Spintronics; First-principles calculations; MAGNETOCRYSTALLINE ANISOTROPY; ROOM-TEMPERATURE; MGO; FE; MAGNETORESISTANCE;
D O I
10.1016/j.jmmm.2023.170596
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Perpendicular magnetic anisotropy (PMA) is a key property of magnetoresistive random access memory (MRAM). To increase areal density of MRAM it is important to find a way to enhance the PMA. Recently a strong enhancement of the PMA by inserting an ultrathin LiF layer at an Fe/MgO interface was reported [T. Nozaki et al., NPG Asia Materials (2022) 14: 5]. To understand the origin of the observed enhancement of the PMA we perform first-principles calculations of magnetocrystalline anisotropy energy (MAE) of the following four kind of multilayer structures: Fe/MgO, Fe/LiF/MgO, Fe/FeO/MgO, and Fe/FeF/LiF/MgO. We find that the MAEs of the Fe/LiF/MgO and the Fe/FeF/LiF/MgO structures are almost the same as that of the Fe/MgO structure, while the MAE of the Fe/FeO/MgO structure is less than a half of that of the Fe/MgO structure. The results show that the major origin of the enhancement of the PMA obtained by inserting an ultrathin LiF layer at an Fe/MgO interface is the suppression of the mixing of Fe and O atoms at the interface. We also find that the in-plane Fe-F coupling gives a positive contribution to the MAE while the in-plane Fe-O coupling gives a negative contribution. The results are useful for designing of high-PMA materials.
引用
收藏
页数:6
相关论文
共 41 条
[1]   Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing (invited) [J].
Ando, K. ;
Fujita, S. ;
Ito, J. ;
Yuasa, S. ;
Suzuki, Y. ;
Nakatani, Y. ;
Miyazaki, T. ;
Yoda, H. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
[2]   Magnetoresistive Random Access Memory [J].
Apalkov, Dmytro ;
Dieny, Bernard ;
Slaughter, J. M. .
PROCEEDINGS OF THE IEEE, 2016, 104 (10) :1796-1830
[3]   Ferromagnetic Anisotropy and the itinerant electron model [J].
Brooks, H .
PHYSICAL REVIEW, 1940, 58 (10) :909-918
[4]   TIGHT-BINDING APPROACH TO THE ORBITAL MAGNETIC-MOMENT AND MAGNETOCRYSTALLINE ANISOTROPY OF TRANSITION-METAL MONOLAYERS [J].
BRUNO, P .
PHYSICAL REVIEW B, 1989, 39 (01) :865-868
[5]   High Performance MRAM with Spin-Transfer-Torque and Voltage-Controlled Magnetic Anisotropy Effects [J].
Cai, Hao ;
Kang, Wang ;
Wang, You ;
Naviner, Lirida Alves De Barros ;
Yang, Jun ;
Zhao, Weisheng .
APPLIED SCIENCES-BASEL, 2017, 7 (09)
[6]   1ST-PRINCIPLES CALCULATION OF THE MAGNETOCRYSTALLINE ANISOTROPY ENERGY OF IRON, COBALT, AND NICKEL [J].
DAALDEROP, GHO ;
KELLY, PJ ;
SCHUURMANS, MFH .
PHYSICAL REVIEW B, 1990, 41 (17) :11919-11937
[7]   Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications [J].
Dieny, B. ;
Chshiev, M. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (02)
[8]   Ultralow Voltage FinFET- Versus TFET-Based STT-MRAM Cells for IoT Applications [J].
Garzon, Esteban ;
Lanuzza, Marco ;
Taco, Ramiro ;
Strangio, Sebastiano .
ELECTRONICS, 2021, 10 (15)
[9]  
Ikeda S, 2010, NAT MATER, V9, P721, DOI [10.1038/NMAT2804, 10.1038/nmat2804]
[10]   Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature [J].
Ikeda, S. ;
Hayakawa, J. ;
Ashizawa, Y. ;
Lee, Y. M. ;
Miura, K. ;
Hasegawa, H. ;
Tsunoda, M. ;
Matsukura, F. ;
Ohno, H. .
APPLIED PHYSICS LETTERS, 2008, 93 (08)