A fast Alikhanov algorithm with general nonuniform time steps for a two-dimensional distributed-order time-space fractional advection-dispersion equation

被引:2
作者
Cao, Jiliang [1 ]
Xiao, Aiguo [1 ,2 ]
Bu, Weiping [1 ]
机构
[1] Xiangtan Univ, Natl Ctr Appl Math Hunan, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan, Peoples R China
[2] Xiangtan Univ, Natl Ctr Appl Math Hunan, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
convergence; distributed-order time-space fractional advection-dispersion equation; fast Alikhanov algorithm; finite element method; nonuniform time steps; stability; FINITE-DIFFERENCE METHODS; DIFFUSION EQUATION; NUMERICAL-METHOD; GALERKIN METHOD; ELEMENT-METHOD; ERROR ANALYSIS; SCHEMES; MODELS; MESHES;
D O I
10.1002/num.22992
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a fast Alikhanov algorithm with nonuniform time steps for a two dimensional distributed-order time-space fractional advection-dispersion equation. First, an efficient fast Alikhanov algorithm on the general nonuniform time steps for the evaluation of Caputo fractional derivative is presented to sharply reduce the computational work and storage, and are applied to the distributed-order time fractional derivative or multi-term time fractional derivative under the nonsmooth regularity assumptions. And a generalized discrete fractional Gronwall inequality is extended to multi-term fractional derivative or distributed-order fractional derivative for analyzing theoretically our algorithm. Then the stability and convergence of time semi-discrete scheme are investigated. Furthermore, we derive the corresponding fully discrete scheme by finite element method and discuss its convergence. At last, the given numerical examples adequately confirm the correctness of theoretical analysis and compare the computing effectiveness between the fast algorithm and the direct method.
引用
收藏
页码:2885 / 2908
页数:24
相关论文
共 73 条
[2]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[3]  
Almeida R., 2015, Computational methods in the fractional calculus of variations
[4]  
Armour KC, 2016, NAT GEOSCI, V9, P549, DOI [10.1038/NGEO2731, 10.1038/ngeo2731]
[5]   Efficient high order algorithms for fractional integrals and fractional differential equations [J].
Banjai, L. ;
Lopez-Fernandez, M. .
NUMERISCHE MATHEMATIK, 2019, 141 (02) :289-317
[6]   Space-time finite element method for the multi-term time-space fractional diffusion equation on a two-dimensional domain [J].
Bu, Weiping ;
Shu, Shi ;
Yue, Xiaoqiang ;
Xiao, Aiguo ;
Zeng, Wei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) :1367-1379
[7]   Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations [J].
Bu, Weiping ;
Xiao, Aiguo ;
Zeng, Wei .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (01) :422-441
[8]   Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations [J].
Bu, Weiping ;
Tang, Yifa ;
Wu, Yingchuan ;
Yang, Jiye .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :264-279
[9]   IMPLICIT-EXPLICIT DIFFERENCE SCHEMES FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONSMOOTH SOLUTIONS [J].
Cao, Wanrong ;
Zeng, Fanhai ;
Zhang, Zhongqiang ;
Karniadakis, George Em .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) :A3070-A3093
[10]   Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
PHYSICAL REVIEW E, 2002, 66 (04) :7-046129