The Fekete-Szego spacing diaeresis Estimates for a New Class of Analytic Functions Associated With the Convolution

被引:0
作者
Soni, Amit [1 ]
Mishra, Ambuj Kumar [2 ]
机构
[1] Govt Engn Coll Bikaner, Dept Math, Bikaner 334004, Rajasthan, India
[2] GLA Univ, Dept Math, IAH, Mathura 281406, India
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2023年 / 41卷
关键词
Analytic functions; starlike functions; convex functions; subordination; Fekete-Szego inequality; COEFFICIENT BOUNDS;
D O I
10.5269/bspm.51735
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present investigation, we discuss the sharpness of the bound of the Fekete-Szego functional vertical bar as - mu a22 vertical bar for the functions belonging to certain subclass Ro, nu, Lg(psi) of analytic functions by means of convolution. The significant and useful consequences with the relevance of this class with some known classes are also pointed out.
引用
收藏
页数:1
相关论文
共 27 条
[1]  
Agarwal R., 2020, Sci. Technol. Asia, V25, P72
[2]  
Agarwal R., 2012, P 2 INT C SOFT COMPU, P353
[3]   Coefficient bounds for p-valent functions [J].
Ali, Rosihan M. ;
Ravichandran, V. ;
Seenivasagan, N. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :35-46
[4]  
[Anonymous], 2009, APPL MATH SCI
[5]  
Bansal D., 2011, INT J MATH MATH SCI, DOI [10.1155/2011/143096, DOI 10.1155/2011/143096]
[6]   Differential subordinations associated with multiplier transformations [J].
Catas, Adriana ;
Oros, Georgia Irina ;
Oros, Gheorghe .
ABSTRACT AND APPLIED ANALYSIS, 2008,
[7]  
조낙은, 2003, [Bulletin of the KMS, 대한수학회보], V40, P399
[8]   Argument estimates of certain analytic functions defined by a class of multiplier transformations [J].
Cho, NE ;
Srivastava, HM .
MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (1-2) :39-49
[9]   On subordinations for certain analytic functions associated with generalized integral operator [J].
Darus M. ;
Al-Shaqsi K. .
Lobachevskii Journal of Mathematics, 2008, 29 (2) :90-97
[10]  
Fekete M., 1933, Journal of London Mathematical Society, Vs1-8, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]