Endpoint L1 estimates for Hodge systems

被引:0
作者
Hernandez, Felipe [1 ]
Raita, Bogdan [2 ,3 ]
Spector, Daniel [4 ,5 ]
机构
[1] Stanford Univ, Dept Math, Bldg 380, Stanford, CA 94305 USA
[2] Scuola Normale Super Pisa, Ennio De Giorgi Math Res Ctr, Piazza Cavalieri 7, I-56126 Pisa, Italy
[3] Alexandru Ioan Cuza Univ, Dept Math, Blvd Carol I 11, Iasi 700506, Romania
[4] Natl Taiwan Normal Univ, Dept Math, 88,Sect 4,Tingzhou Rd, Taipei 116, Taiwan
[5] Okinawa Inst Sci & Technol Grad Univ, Nonlinear Anal Unit, 1919-1 Tancha, Kunigami, Okinawa, Japan
关键词
VECTOR-FIELDS; DIV-CURL; EMBEDDINGS; OPERATORS; SPACES;
D O I
10.1007/s00208-022-02383-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d >= 2. In this paper we give a simple proof of the endpoint Besov-Lorentz estimate parallel to I alpha F parallel to B-d/(d-alpha),1(0,1) (R-d;R-k) <= C parallel to F parallel to(L)1(R-d;R-k) for all F is an element of L-1 (R-d ; R-k) which satisfy a first order cocancelling differential constraint, where alpha is an element of (0, d) and I-alpha is a Riesz potential. We show how this implies endpoint Besov-Lorentz estimates for Hodge systems with L-1 data via fractional integration for exterior derivatives.
引用
收藏
页码:1923 / 1946
页数:24
相关论文
共 32 条
  • [1] Adams DR., 1996, Function spaces and potential theory, DOI [10.1007/978-3-662-03282-4, DOI 10.1007/978-3-662-03282-4]
  • [2] Alvino A., 1977, Boll. Un. Mat. Ital., V14, P148
  • [3] Sobolev martingales
    Ayoush, Rami
    Stolyarov, Dmitriy
    Wojciechowski, Michal
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (04) : 1225 - 1246
  • [4] Bourgain J, 2004, PUBL MATH-PARIS, P1, DOI 10.1007/s10240-004-0019-5
  • [5] New estimates for the Laplacian, the div-curl, and related Hodge systems
    Bourgain, J
    Brezis, H
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 338 (07) : 539 - 543
  • [6] Bourgain J, 2007, J EUR MATH SOC, V9, P277
  • [7] Federer H., 1969, GRUNDLEHREN MATH WIS, V153
  • [8] Grafakos L., 2008, CLASSICAL FOURIER AN, DOI DOI 10.1007/978-1-4939-1194-3
  • [9] Guerra A., ARXIV190903923
  • [10] Hernandez F., ARXIV200805639