Positive periodic solutions to super-linear second-order ODEs

被引:0
作者
Sremr, Jiri [1 ]
机构
[1] Brno Univ Technol, Inst Math, Fac Mech Engn, Tech 2, Brno 61669, Czech Republic
关键词
second-order differential equation; super-linearity; positive solution; existence; uniqueness; EXACT MULTIPLICITY; STABILITY; BIFURCATION; EXISTENCE; EQUATIONS;
D O I
10.21136/CMJ.2024.0128-23
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence and uniqueness of a positive solution to the problemu ''=p(t)u+q(t,u)u+f(t);u(0)=u(omega),u '(0)=u '(omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u<^>{\prime \prime }} = p(t)u + q(t,u)u + f(t);\,\,\,\,\,u(0) = u(\omega ),\,\,\,{u<^>\prime }(0) = {u<^>\prime }(\omega )$$\end{document}with a super-linear nonlinearity and a nontrivial forcing term f. To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case.
引用
收藏
页码:257 / 275
页数:19
相关论文
共 15 条
[1]  
Cabada A., 2018, Maximum Principles for the Hill's Equation
[2]   Bifurcation and stability of periodic solutions of Duffing equations [J].
Chen, Hongbin ;
Li, Yi .
NONLINEARITY, 2008, 21 (11) :2485-2503
[3]   Stability and exact multiplicity of periodic solutions of duffing equations with cubic nonlinearities [J].
Chen, Hongbin ;
Li, Yi .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (12) :3925-3932
[4]  
De Coster C., 2006, Two-Point Boundary Value Problems: Lower and Upper Solutions
[5]   A MULTIPLICITY RESULT FOR PERIODIC-SOLUTIONS OF FORCED NONLINEAR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
FABRY, C ;
MAWHIN, J ;
NKASHAMA, MN .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :173-180
[6]  
Fonda A, 2016, BIRKHAUSER ADV TEXTS, P1, DOI 10.1007/978-3-319-47090-0
[7]   Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem [J].
Graef, John R. ;
Kong, Lingju ;
Wang, Haiyan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (05) :1185-1197
[8]   A NOTE ON PERIODIC-SOLUTIONS OF SOME NONAUTONOMOUS DIFFERENTIAL-EQUATIONS [J].
GROSSINHO, MR ;
SANCHEZ, L .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 34 (02) :253-265
[9]   Exact Multiplicity and Stability of Periodic Solutions for Duffing Equation with Bifurcation Method [J].
Liang, Shuqing .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (02) :477-493
[10]   On periodic solutions to second-order Duffing type equations [J].
Lomtatidze, Alexander ;
Sremr, Jiri .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 40 :215-242