Finite Element Model for the Interaction of Liquid Metals with Reactor Steel

被引:1
作者
Chikova, O. A. [1 ]
Wang, V. S. [2 ]
Li, S. L. [1 ]
机构
[1] Ural Fed Univ, Ekaterinburg 620002, Russia
[2] North China Univ Water Resources & Elect Power, Inst Heat Power Engn, Zhengzhou 450011, Peoples R China
关键词
liquid-metal embrittlement; reactor steel; liquid-metal coolants; finite element simulation; mean-field theory; MECHANISMS; EMBRITTLEMENT; PROPAGATION; FATIGUE; SURFACE; LEAD;
D O I
10.1134/S1061933X23601154
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The article discusses a model of the interaction between a liquid-metal coolant (Pb, Pb55Bi(e)) and a heat exchanger material (316L steel) in an SVBR-type nuclear reactor cooling device for the case in which the effect of liquid-metal embrittlement cannot be ignored. It is assumed that a crack propagates due to the penetration of the liquid-metal coolant into intergrain boundaries. The free energy of a wetted surface is calculated using the mean-field theory within the formalism of finite element analysis. Tensile stress S (MPa) is determined for the propagation of a crack 50 mu m long from a defect in the form of a 0.15-mm scratch on the surface of the heat exchanger. The calculation is carried out for an operation temperature range of 900-1100 K, when the melt wets the steel. The values of S= 253-358 , and 210 -369 MPa have been obtained for the interaction of Pb55Bi melts and Pb with 316L steel, respectively. The calculation results mean that a heat exchanger with surface defects can be damaged due to the effect of liquid-metal embrittlement.
引用
收藏
页码:130 / 137
页数:8
相关论文
共 40 条
[31]   The effect of a surface-active medium on the mechanical stability and damageability of a solid surface. Review [J].
Shchukin, E. D. ;
Savenko, V. I. ;
Malkin, A. I. .
PROTECTION OF METALS AND PHYSICAL CHEMISTRY OF SURFACES, 2013, 49 (01) :40-56
[32]  
Shujian Tian, 2019, E3S Web of Conferences, DOI 10.1051/e3sconf/201913606022
[33]   CRACK PROPAGATION IN A LIQUID METAL ENVIRONMENT [J].
STOLOFF, NS ;
JOHNSTON, TL .
ACTA METALLURGICA, 1963, 11 (05) :251-&
[34]  
Subbotin V.I., 1970, Physico-Chemical Basis for the Use of Liquid Metal Coolants
[35]  
Vafaie A, 2019, INT J AUTOMO MECH E, V16, P6386
[36]   CONCERNING LIQUID METAL EMBRITTLEMENT, PARTICULARLY OF ZINC MONOCRYSTALS BY MERCURY [J].
WESTWOOD, AR ;
KAMDAR, MH .
PHILOSOPHICAL MAGAZINE, 1963, 8 (89) :787-&
[37]   Filling a hole by capillary flow of liquid metal-equilibria and instabilities [J].
Yu, Cheng-Nien ;
Lazaridis, Konstantinos ;
Wu, Yangyang ;
Voroshilov, Evgeniy ;
Krivilyov, Mikhail D. ;
Mesarovic, Sinisa Dj. ;
Sekulic, Dusan P. .
PHYSICS OF FLUIDS, 2021, 33 (03)
[38]   Analysis on liquid metal corrosion-oxidation interactions [J].
Zhang, Jinsuo ;
Li, Ning .
CORROSION SCIENCE, 2007, 49 (11) :4154-4184
[39]   Wetting Behavior of LBE on Corroded Candidate LFR Structural Materials of 316L, T91 and CLAM [J].
Zhu, Huiping ;
Du, Xiaochao ;
Liu, Xudong ;
Yan, Tingxu ;
Li, Xiaobo ;
Wang, Yifeng ;
Qi, Muran ;
Tu, Xu .
MATERIALS, 2022, 15 (01)
[40]  
Zinina A.P., 2011, Izv. Mosk. Gos. Tekh. Univ. "MAMI, P127