CARVING MODEL-FREE INFERENCE

被引:1
|
作者
Panigrahi, Snigdha [1 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
关键词
Carving; conditional inference; model-free; post-selection inference; randomization; selective inference; POST-SELECTION INFERENCE;
D O I
10.1214/23-AOS2318
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Complex studies involve many steps. Selecting promising findings based on pilot data is a first step. As more observations are collected, the investigator must decide how to combine the new data with the pilot data to construct valid selective inference. Carving, introduced by Fithian, Sun and Taylor (2014), enables the reuse of pilot data during selective inference and accounts for overoptimism from the selection process. However, currently, carving is only justified for parametric models such as the commonly used Gaussian model. In this paper, we develop the asymptotic theory to substantiate the use of carv-ing beyond Gaussian models. Our results indicate that carving produces valid and tight confidence intervals within a model-free setting, as demonstrated through simulated and real instances.
引用
收藏
页码:2318 / 2341
页数:24
相关论文
共 50 条
  • [1] Dopamine enhances model-free credit assignment through boosting of retrospective model-based inference
    Deserno, Lorenz
    Moran, Rani
    Michely, Jochen
    Lee, Ying
    Dayan, Peter
    Dolan, Raymond J.
    ELIFE, 2021, 10
  • [2] A model-free Bayesian classifier
    Geng, Zhiqiang
    Meng, Qingchao
    Bai, Ju
    Chen, Jie
    Han, Yongming
    Wei, Qin
    Ouyang, Zhi
    INFORMATION SCIENCES, 2019, 482 : 171 - 188
  • [3] Model-free connectedness measures
    Gabauer, David
    Chatziantoniou, Ioannis
    Stenfors, Alexis
    FINANCE RESEARCH LETTERS, 2023, 54
  • [4] Model-free condition monitoring with confidence
    Gotzinger, M.
    TaheriNejad, N.
    Kholerdi, H. A.
    Jantsch, A.
    Willegger, E.
    Glatzl, T.
    Rahmani, A. M.
    Sauter, T.
    Liljeberg, P.
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2019, 32 (4-5) : 466 - 481
  • [5] Model-free cable robot control
    Blanchini, Franco
    Della Schiava, Luca
    Fenu, Gianfranco
    Giordano, Giulia
    Pellegrino, Felice Andrea
    Salvato, Erica
    IFAC PAPERSONLINE, 2023, 56 (02): : 550 - 555
  • [6] Totally model-free learned skillful coping
    Dreyfus, Stuart E.
    Bulletin of Science, Technology and Society, 2004, 24 (03) : 182 - 187
  • [7] A model-free method for identification of mass modifications
    Suwala, Grzegorz
    Jankowski, Lukasz
    STRUCTURAL CONTROL & HEALTH MONITORING, 2012, 19 (02) : 216 - 230
  • [8] Model-free kinematic control for robotic systems
    Salvato, Erica
    Blanchini, Franco
    Fenu, Gianfranco
    Giordano, Giulia
    Pellegrino, Felice Andrea
    AUTOMATICA, 2025, 173
  • [9] Model-free survival conditional feature screening
    Chen, Xiaolin
    Liu, Wei
    Chen, Xiaojing
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 5690 - 5708
  • [10] The Boundedness Conditions for Model-Free HDP(lambda)
    Al-Dabooni, Seaar
    Wunsch, Donald
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (07) : 1928 - 1942