When are the norms of the Riesz projection and the backward shift operator equal to one?

被引:1
作者
Karlovych, Oleksiy [1 ]
Shargorodsky, Eugene [2 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, Portugal
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
关键词
Banach function space; Abstract Hardy space; Riesz projection; Backward shift operator; TOEPLITZ-OPERATORS; REARRANGEMENT; THEOREM;
D O I
10.1016/j.jfa.2023.110158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The lower estimate by Gohberg and Krupnik (1968) and the upper estimate by Hollenbeck and Verbitsky (2000) for the norm of the Riesz projection Pon the Lebesgue space L-p lead to parallel to P parallel to(Lp -> Lp)= 1/ sin(pi/p) for every p is an element of(1, infinity). Hence L-2 is the only space among all Lebesgue spaces L-p for which the norm of the Riesz projection Pis equal to one. Banach function spaces Xare far-reaching generalisations of Lebesgue spaces L-p. We prove that the norm of Pis equal to one on the space Xif and only if Xcoincides with L-2 and there exists a constant C is an element of(0, infinity) such that parallel to f parallel to(X) = C parallel to f parallel to(L2) for all functions f is an element of X. Independently from this, we also show that the norm of Pon Xis equal to one if and only if the norm of the backward shift operator Son the abstract Hardy space H[X] built upon X is equal to one. (c) 2023 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:29
相关论文
共 34 条
[1]  
Abramovich YA, 1996, LECT NOTES PURE APPL, V175, P13
[2]  
Bak J., 2010, Complex Analysis
[3]  
Bennett C., 1988, Interpolation of Operators. Vol. 129. Pure and Applied Mathematics, V129
[4]   FACTORIZATIONS OF ANALYTIC SELF-MAPS OF THE UPPER HALF-PLANE [J].
Bercovici, Hari ;
Timotin, Dan .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (02) :649-660
[5]   A GENERAL LOOK AT LOCAL PRINCIPLES WITH SPECIAL EMPHASIS ON THE NORM COMPUTATION ASPECT [J].
BOTTCHER, A ;
KRUPNIK, N ;
SILBERMANN, B .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1988, 11 (04) :455-479
[6]  
Bottcher A., 2006, ANAL TOEPLITZ OPERAT
[7]  
Chalendar I, 2014, Arxiv, DOI [arXiv:1307.2646, 10.48550/arXiv.1307.2646, DOI 10.48550/ARXIV.1307.2646]
[8]   AN EXTREMAL PROBLEM FOR CHARACTERISTIC FUNCTIONS [J].
Chalendar, Isabelle ;
Garcia, Stephan Ramon ;
Ross, William T. ;
Timotin, Dan .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (06) :4115-4135
[9]  
Cima Joseph A., 2006, Mathematical Surveys and Monographs, V125
[10]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3