A Lightweight High-Resolution RS Image Road Extraction Method Combining Multi-Scale and Attention Mechanism

被引:4
|
作者
Wang, Rui [1 ]
Cai, Mingxiang [1 ]
Xia, Zixuan [2 ]
机构
[1] China Transport Telecommun & Informat Ctr, Beijing 100011, Peoples R China
[2] Heilongjiang Univ Technol, Coll Art & Architectural Engn, Jixi 158100, Peoples R China
关键词
Road extraction; deep learning; CAM; SAM; ASPP; lightweight; SEGMENTATION;
D O I
10.1109/ACCESS.2023.3313390
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Road information plays an indispensable role in human society's development. However, owing to the diversity and complexity of roads, it is difficult to obtain satisfactory road-extraction result. Some typical factors, such as discontinuity, loss of edge details, and long-time consumption, have negative impacts on obtaining accurate road information. These problems are particularly prominent during road extraction when high-resolution remote-sensing images are used. To obtain accurate road information, a novel lightweight deep learning neural network was pro-posed in this study by integrating a multiscale module and attention mechanisms. As an excellent multiscale segmentation module, the atrous spatial pyramid pooling was selected to enhance the road extraction ability of remote sensing images. In addition, an attention mechanism was employed to solve the problems of discontinuity and loss of edge details in road extraction, and MobileNet V2 was selected as the backbone of DeepLab V3+ because of its lightweight structure, which can help solve the problem of excessive training time consumption. The experimental verification was carried out on the Ottawa road dataset and the Massachusetts road dataset. Experimental results show that compared with U-Net, SegNet and MDeeplab v3+ networks, the proposed algorithm is the best in IoU, Recall, OA and Kappa. Among them, on the Ottawa road dataset, the OA and Kappa of the algorithm in this paper are 98.92 % and 95.02 %, respectively. On the Massachusetts road dataset, OA and Kappa 98.29% and 89.87%. In addition, the training time was significantly shorter than that of the other deep learning networks. The proposed method exhibited a good performance in road extraction.
引用
收藏
页码:108956 / 108966
页数:11
相关论文
共 50 条
  • [31] Lightweight Semantic Segmentation of Intelligent Workshop Scene Objects Combining Multi-Scale and Attention Mechanisms
    Yan C.
    Chen G.
    Yi J.
    Gou R.
    Liao X.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (10): : 1626 - 1636
  • [32] Multi-scale SAR road extraction method based on Duda operator
    Jin G.
    Tan L.
    Wang X.
    Zhao J.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (10): : 3076 - 3082
  • [33] Attention-Guided Multi-Scale Segmentation Neural Network for Interactive Extraction of Region Objects from High-Resolution Satellite Imagery
    Li, Kun
    Hu, Xiangyun
    Jiang, Huiwei
    Shu, Zhen
    Zhang, Mi
    REMOTE SENSING, 2020, 12 (05)
  • [34] A lightweight network for traffic sign recognition based on multi-scale feature and attention mechanism
    Wei, Wei
    Zhang, Lili
    Yang, Kang
    Li, Jing
    Cui, Ning
    Han, Yucheng
    Zhang, Ning
    Yang, Xudong
    Tan, Hongxin
    Wang, Kai
    HELIYON, 2024, 10 (04)
  • [35] Road Extraction from High-Resolution SAR Image on Urban Area
    Han, Chuanzhao
    Zhou, Zhixin
    Zhu Junjie
    Ding Chibiao
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1454 - +
  • [36] Change Detection for High-Resolution Remote Sensing Images Based on a Multi-Scale Attention Siamese Network
    Li, Jiankang
    Zhu, Shanyou
    Gao, Yiyao
    Zhang, Guixin
    Xu, Yongming
    REMOTE SENSING, 2022, 14 (14)
  • [37] A Residual Attention and Local Context-Aware Network for Road Extraction from High-Resolution Remote Sensing Imagery
    Liu, Ziwei
    Wang, Mingchang
    Wang, Fengyan
    Ji, Xue
    REMOTE SENSING, 2021, 13 (24)
  • [38] High-resolution Remote Sensing Image Road Extraction Based on Multi-mark Pixel Matching
    Yang Y.
    Li Y.
    Zhao Q.-H.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (01): : 68 - 74and110
  • [39] An road extraction method of high-resolution remote sensing image based on spatial information perception semantic segmentation model
    Wu Q.
    Wang S.
    Wang B.
    Wu Y.
    National Remote Sensing Bulletin, 2022, 26 (09) : 1872 - 1885
  • [40] A Lightweight Road Defect Detection Method Based on Multi-scale Hybrid Feature Fusion
    Kuang, Jin
    Liu, Dong
    Lv, Hong
    Xu, Xinyue
    Zhang, Lingrong
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083