CRISPR applications in cancer diagnosis and treatment

被引:9
作者
Wang, Mingxia [1 ,2 ]
Chen, Menghui [1 ]
Wu, Xia [1 ]
Huang, Xinbo [1 ]
Yu, Bo [1 ]
机构
[1] Peking Univ, Shenzhen Hosp, Skin Res Inst, Dept Dermatol, Shenzhen 518036, Peoples R China
[2] Peking Univ, Inst Urol, Shenzhen Key Lab Reprod Med & Genet, Shenzhen Hosp, Shenzhen 518000, Peoples R China
关键词
Cas9; Cas12; Cas13; Cancer; Gene therapy; Diagnostic tools; Clinical trials; RNA-GUIDED ENDONUCLEASE; NUCLEIC-ACID DETECTION; STRUCTURAL BASIS; DNA-REPAIR; PAM RECOGNITION; GENE REPRESSION; GENOMIC DNA; DUAL-RNA; BASE; CPF1;
D O I
10.1186/s11658-023-00483-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cancer remains a significant global health challenge, necessitating the exploration of novel and more precise therapeutic options beyond conventional treatments. In this regard, clustered regularly interspaced short palindromic repeats (CRISPR) systems have emerged as highly promising tools for clinical gene editing applications. The CRISPR family encompasses diverse CRISPR-associated (Cas) proteins that possess the ability to recognize specific target sequences. The initial CRISPR system consisted of the Cas9 protein and a single-guide RNA, which guide Cas9 to the desired target sequence, facilitating precise double-stranded cleavage. In addition to the traditional cis-cleavage activity, the more recently discovered Cas12 and Cas13 proteins exhibit trans-cleavage activity, which expands their potential applications in cancer diagnosis. In this review, we provide an overview of the functional characteristics of Cas9, Cas12, and Cas13. Furthermore, we highlight the latest advancements and applications of these CRISPR systems in cancer gene therapy and molecular diagnosis. We also emphasize the importance of understanding the strengths and limitations of each CRISPR system to maximize their clinical utility. By providing a comprehensive overview of the current state of CRISPR technology in cancer research, we aim to inspire further exploration and innovation in this rapidly evolving field.
引用
收藏
页数:22
相关论文
共 139 条
  • [11] Screening of ETO2-GLIS2-induced Super Enhancers identifies targetable cooperative dependencies in acute megakaryoblastic leukemia
    Benbarche, Salima
    Lopez, Cecile K.
    Salataj, Eralda
    Aid, Zakia
    Thirant, Cecile
    Laiguillon, Marie-Charlotte
    Lecourt, Severine
    Belloucif, Yannis
    Vaganay, Camille
    Antonini, Marion
    Hu, Jiang
    Babinet, Alexandra da Silva
    Ndiaye-Lobry, Delphine
    Pardieu, Bryann
    Petit, Arnaud
    Puissant, Alexandre
    Chaumeil, Julie
    Mercher, Thomas
    Lobry, Camille
    [J]. SCIENCE ADVANCES, 2022, 8 (06)
  • [12] CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential
    Blenke, Erik Oude
    Evers, Martijn J. W.
    Mastrobattista, Enrico
    van der Oost, John
    [J]. JOURNAL OF CONTROLLED RELEASE, 2016, 244 : 139 - 148
  • [13] CRISPR-Cas9 globin editing can induce megabase-scale copy-neutral losses of heterozygosity in hematopoietic cells
    Boutin, J.
    Rosier, J.
    Cappellen, D.
    Prat, F.
    Toutain, J.
    Pennamen, P.
    Bouron, J.
    Rooryck, C.
    Merlio, J. P.
    Lamrissi-Garcia, I.
    Cullot, G.
    Amintas, S.
    Guyonnet-Duperat, V.
    Ged, C.
    Blouin, J. M.
    Richard, E.
    Dabernat, S.
    Moreau-Gaudry, F.
    Bedel, A.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [14] Braakhuis BJM, 2003, CANCER RES, V63, P1727
  • [15] Regulation of DNA repair throughout the cell cycle
    Branzei, Dana
    Foiani, Marco
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2008, 9 (04) : 297 - 308
  • [16] GENE THERAPY
    Brody, Herb
    [J]. NATURE, 2018, 564 (7735) : S5 - S5
  • [17] CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics
    Bruch, Richard
    Baaske, Julia
    Chatelle, Claire
    Meirich, Mailin
    Madlener, Sibylle
    Weber, Wilfried
    Dincer, Can
    Urban, Gerald Anton
    [J]. ADVANCED MATERIALS, 2019, 31 (51)
  • [18] Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts
    Campa, Carlo C.
    Weisbach, Niels R.
    Santinha, Antonio J.
    Incarnato, Danny
    Platt, Randall J.
    [J]. NATURE METHODS, 2019, 16 (09) : 887 - +
  • [19] CRISPR/Cas9 screening identifies a kinetochore-microtubule dependent mechanism for Aurora-A inhibitor resistance in breast cancer
    Chen, Ailin
    Wen, Shijun
    Liu, Fang
    Zhang, Zijian
    Liu, Meiling
    Wu, Yuanzhong
    He, Bin
    Yan, Min
    Kang, Tiebang
    Lam, Eric W-F
    Wang, Zifeng
    Liu, Quentin
    [J]. CANCER COMMUNICATIONS, 2021, 41 (02) : 121 - 139
  • [20] CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity
    Chen, Janice S.
    Ma, Enbo
    Harrington, Lucas B.
    Da Costa, Maria
    Tian, Xinran
    Palefsky, Joel M.
    Doudna, Jennifer A.
    [J]. SCIENCE, 2018, 360 (6387) : 436 - +