On the direct building of 8 x 8 self-reciprocal recursive MDS Matrices effective for implementation over GF(q) using Reed-Solomon codes

被引:0
作者
Tran Thi Luong [1 ]
机构
[1] Acad Cryptog Tech, 141 Chien Thang Rd, Hanoi, Vietnam
关键词
Companion matrix; Self-reciprocal MDS matrix; MDS matrix; Recursive matrix; Reed-solomon codes;
D O I
10.47974/JDMSC-1715
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
MDS matrices are from the MDS codes in coding theory that are being used widely in cryptographic applications. Recursive MDS matrix is an matrix that is a power of some simple companion matrix. These matrices are so convenient for execution especially for hardware implementation using LFSRs. Therefore, these matrices have attracted the interest of many scientists. In this paper, we give a way to directly build 8 x 8 self-reciprocal recursive MDS matrices efficient for execution over the field GF(q), (q = p(r), pis a prime number) using the Reed-Solomon codes. These matrices are significant in practice because they have the potential to be used in lightweight cryptographic algorithms.
引用
收藏
页码:1237 / 1248
页数:12
相关论文
共 12 条
[1]   Direct Construction of Recursive MDS Diffusion Layers Using Shortened BCH Codes [J].
Augot, Daniel ;
Finiasz, Matthieu .
FAST SOFTWARE ENCRYPTION, FSE 2014, 2015, 8540 :3-17
[2]  
Augot D, 2013, IEEE INT SYMP INFO, P1551, DOI 10.1109/ISIT.2013.6620487
[3]  
Gupta KC., 2013, INT C AV REL SEC, P29, DOI 10.1007/978-3-642-40588-43
[4]   Almost involutory recursive MDS diffusion layers [J].
Gupta, Kishan Chand ;
Pandey, Sumit Kumar ;
Venkateswarlu, Ayineedi .
DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (2-3) :609-626
[5]   On the direct construction of recursive MDS matrices [J].
Gupta, Kishan Chand ;
Pandey, Sumit Kumar ;
Venkateswarlu, Ayineedi .
DESIGNS CODES AND CRYPTOGRAPHY, 2017, 82 (1-2) :77-94
[6]  
Kolay S., 2014, IACR CRYPTOLOGY EPRI, V498
[7]  
Luong T. T., 2021, INT C MODELLING COMP, P386
[8]  
Luong T. T., 2016, J SCI TECHNOLOGY INF, V3, P10
[9]  
MacWiliams F.J, 1981, THEORY ERROR CORRECT
[10]  
Sajadieh M, 2012, LECT NOTES COMPUT SC, V7549, P385, DOI 10.1007/978-3-642-34047-5_22