Hydrostatic Limit of the Navier-Stokes-Alpha Model

被引:3
作者
Glangetas, Leo [1 ]
Ngo, Van-Sang [1 ]
Said, El Mehdi [1 ]
机构
[1] Univ Rouen Normandie, Lab Math Raphael Salem, CNRS, UMR 6085, F-76000 Rouen, France
关键词
Navier-Stokes-& alpha; model; hydrostatic approximation; analyticity; SHALLOW-WATER EQUATION; WELL-POSEDNESS; GEODESIC-FLOW; UNIQUENESS; EXISTENCE;
D O I
10.1007/s10473-023-0502-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the hydrostatic limit of the Navier-Stokes-alpha model in a very thin strip domain. We derive some Prandtl-type limit equations for this model and we prove the global well-posedness of the limit system for small initial conditions in an appropriate analytic function space.
引用
收藏
页码:1945 / 1980
页数:36
相关论文
共 50 条
[31]   On the Hydrostatic Approximation of Compressible Anisotropic Navier–Stokes Equations–Rigorous Justification [J].
Hongjun Gao ;
Šárka Nečasová ;
Tong Tang .
Journal of Mathematical Fluid Mechanics, 2022, 24
[32]   THE VLASOV-NAVIER-STOKES EQUATIONS AS A MEAN FIELD LIMIT [J].
Flandoli, Franco ;
Leocata, Marta ;
Ricci, Cristiano .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08) :3741-3753
[33]   An Asymptotic Limit of a Navier-Stokes System with Capillary Effects [J].
Juengel, Ansgar ;
Lin, Chi-Kun ;
Wu, Kung-Chien .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 329 (02) :725-744
[34]   Chemical diffusion limit of a chemotaxis-Navier-Stokes system [J].
Hou, Qianqian .
APPLICABLE ANALYSIS, 2024, 103 (01) :198-210
[35]   INVISCID LIMIT FOR AXISYMMETRIC NAVIER-STOKES-BOUSSINESQ SYSTEM [J].
Abidi, Hammadi ;
Gui, Guilong .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (06) :1625-1652
[36]   The Stokes Limit in a Three-Dimensional Keller-Segel-Navier-Stokes System [J].
Zhou, Ju .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (03) :2157-2184
[37]   The hydrodynamic limit for the inhomogeneous Vlasov-Navier-Stokes system [J].
El Ghani, Najoua ;
Mejri, Hassen .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (06)
[38]   Inviscid limit for the axisymmetric stratified Navier-Stokes system [J].
Sulaiman, Samira .
REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (02) :431-462
[39]   The zero viscosity limit of stochastic Navier-Stokes flows [J].
Goodair, Daniel ;
Crisan, Dan .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2025, 189
[40]   The Inviscid Limit for the Navier-Stokes Equations with Data Analytic Only Near the Boundary [J].
Kukavica, Igor ;
Vicol, Vlad ;
Wang, Fei .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (02) :779-827