Hydrostatic Limit of the Navier-Stokes-Alpha Model

被引:3
|
作者
Glangetas, Leo [1 ]
Ngo, Van-Sang [1 ]
Said, El Mehdi [1 ]
机构
[1] Univ Rouen Normandie, Lab Math Raphael Salem, CNRS, UMR 6085, F-76000 Rouen, France
关键词
Navier-Stokes-& alpha; model; hydrostatic approximation; analyticity; SHALLOW-WATER EQUATION; WELL-POSEDNESS; GEODESIC-FLOW; UNIQUENESS; EXISTENCE;
D O I
10.1007/s10473-023-0502-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the hydrostatic limit of the Navier-Stokes-alpha model in a very thin strip domain. We derive some Prandtl-type limit equations for this model and we prove the global well-posedness of the limit system for small initial conditions in an appropriate analytic function space.
引用
收藏
页码:1945 / 1980
页数:36
相关论文
共 50 条
  • [1] Hydrostatic Limit of the Navier-Stokes-Alpha Model
    Léo Glangetas
    Van-Sang Ngo
    El Mehdi Said
    Acta Mathematica Scientia, 2023, 43 : 1945 - 1980
  • [2] On the hydrostatic approximation of the Navier-Stokes equations in a thin strip
    Paicu, Marius
    Zhang, Ping
    Zhang, Zhifei
    ADVANCES IN MATHEMATICS, 2020, 372
  • [3] OPTIMAL GEVREY STABILITY OF HYDROSTATIC APPROXIMATION FOR THE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN
    Wang, Chao
    Wang, Yuxi
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2024, 23 (04) : 1521 - 1566
  • [4] Vanishing viscosity limit for incompressible Navier-Stokes equations with Navier boundary conditions for small slip length
    Wang, Ya-Guang
    Yin, Jierong
    Zhu, Shiyong
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (10)
  • [5] On the hydrostatic approximation of Navier-Stokes-Maxwell system with Gevrey data
    Liu, Ning
    Paicu, Marius
    Zhang, Ping
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 187 : 1 - 44
  • [6] A Kato-Type Criterion for the Inviscid Limit of the Compressible Navier-Stokes System
    Zou, Yonghui
    Xu, Xin
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (03)
  • [7] Incompressible limit for the free surface Navier-Stokes system
    Masmoudi, Nader
    Rousset, Frederic
    Sun, Changzhen
    ANNALS OF PDE, 2023, 9 (01)
  • [8] ON THE INVISCID LIMIT OF THE NAVIER-STOKES EQUATIONS
    Constantin, Peter
    Kukavica, Igor
    Vicol, Vlad
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) : 3075 - 3090
  • [9] Global hydrostatic approximation of the hyperbolic Navier-Stokes system with small Gevrey class 2 data
    Paicu, Marius
    Zhang, Ping
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (06) : 1109 - 1146
  • [10] ZERO-VISCOSITY LIMIT OF THE NAVIER-STOKES EQUATIONS WITH THE NAVIER FRICTION BOUNDARY CONDITION
    Tao, Tao
    Wang, Wendong
    Zhang, Zhifei
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1040 - 1095