Unveiling the Formation of the Massive DR21 Ridge

被引:11
作者
Bonne, L. [1 ]
Bontemps, S. [2 ]
Schneider, N. [3 ]
Simon, R. [3 ]
Clarke, S. D. [4 ]
Csengeri, T. [2 ]
Chambers, E. [1 ]
Graf, U. [3 ]
Jackson, J. M. [1 ,5 ]
Klein, R. [1 ]
Okada, Y. [3 ]
Tielens, A. G. G. M. [6 ,7 ]
Tiwari, M. [6 ]
机构
[1] NASA Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94045 USA
[2] Univ Bordeaux, Lab Astrophys Bordeaux, CNRS, B18N,Allee Geoffroy St Hilaire, F-33615 Pessac, France
[3] Univ Cologne, Phys Inst 1, Zulpicher Str 77, D-50937 Cologne, Germany
[4] Acad Sinica, Inst Astron & Astrophys, Taipei, Taiwan
[5] Green Bank Observ, POB 2, Green Bank, WV 24944 USA
[6] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
[7] Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
关键词
CLOUD-CLOUD COLLISIONS; UNDERSTANDING STAR-FORMATION; CYGNUS-X REGION; MOLECULAR CLOUDS; EARLIEST PHASES; MAGNETIC-FIELDS; GRAVITATIONAL COLLAPSE; INITIAL CONDITIONS; INTERMEDIATE-MASS; GLOBAL COLLAPSE;
D O I
10.3847/1538-4357/acd536
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present new (CO)-C-13 (1-0), (CO)-O-18 (1-0), HCO+ (1-0), and (HCO+)-C-13 (1-0) maps from the IRAM 30 m telescope and a spectrally resolved [C ii] 158 & mu;m map observed with the SOFIA telescope toward the massive DR21 cloud. This traces the kinematics from low- to high-density gas in the cloud, which allows us to constrain the formation scenario of the high-mass star-forming DR21 ridge. The molecular line data reveal that the subfilaments are systematically redshifted relative to the dense ridge. We demonstrate that [C ii] unveils the surrounding CO-poor gas of the dense filaments in the DR21 cloud. We also show that this surrounding gas is organized in a flattened cloud with curved redshifted dynamics perpendicular to the ridge. The subfilaments thus form in this curved and flattened mass reservoir. A virial analysis of the different lines indicates that self-gravity should drive the evolution of the ridge and surrounding cloud. Combining all results, we propose that bending of the magnetic field, due to the interaction with a mostly atomic colliding cloud, explains the velocity field and resulting mass accretion on the ridge. This is remarkably similar to what was found for at least two nearby low-mass filaments. We tentatively propose that this scenario might be a widespread mechanism to initiate star formation in the Milky Way. However, in contrast to low-mass clouds, gravitational collapse plays a role on the parsec scale of the DR21 ridge because of the higher density. This allows more effective mass collection at the centers of collapse and should facilitate massive cluster formation.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Evolutionary tracks of massive stars during formation
    Smith, Michael D.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 438 (02) : 1051 - 1066
  • [42] EARLY STAGES OF CLUSTER FORMATION: FRAGMENTATION OF MASSIVE DENSE CORES DOWN TO ≲1000 AU
    Palau, Aina
    Fuente, Asuncion
    Girart, Josep M.
    Estalella, Robert
    Ho, Paul T. P.
    Sanchez-Monge, Alvaro
    Fontani, Francesco
    Busquet, Gemma
    Commercon, Benoit
    Hennebelle, Patrick
    Boissier, Jeremie
    Zhang, Qizhou
    Cesaroni, Riccardo
    Zapata, Luis A.
    ASTROPHYSICAL JOURNAL, 2013, 762 (02)
  • [43] THE ONSET OF MASSIVE STAR FORMATION: THE EVOLUTION OF TEMPERATURE AND DENSITY STRUCTURE IN AN INFRARED DARK CLOUD
    Battersby, Cara
    Ginsburg, Adam
    Bally, John
    Longmore, Steve
    Dunham, Miranda
    Darling, Jeremy
    ASTROPHYSICAL JOURNAL, 2014, 787 (02)
  • [44] SIMULATING THE FORMATION OF MASSIVE PROTOSTARS. I. RADIATIVE FEEDBACK AND ACCRETION DISKS
    Klassen, Mikhail
    Pudritz, Ralph E.
    Kuiper, Rolf
    Peters, Thomas
    Banerjee, Robi
    ASTROPHYSICAL JOURNAL, 2016, 823 (01)
  • [45] Early-forming Massive Stars Suppress Star Formation and Hierarchical Cluster Assembly
    Lewis, Sean C.
    McMillan, Stephen L. W.
    Low, Mordecai-Mark Mac
    Cournoyer-Cloutier, Claude
    Polak, Brooke
    Wilhelm, Martijn J. C.
    Tran, Aaron
    Sills, Alison
    Zwart, Simon Portegies
    Klessen, Ralf S.
    Wall, Joshua E.
    ASTROPHYSICAL JOURNAL, 2023, 944 (02)
  • [46] The W43-MM1 mini-starburst ridge, a test for star formation efficiency models
    Louvet, F.
    Motte, F.
    Hennebelle, P.
    Maury, A.
    Bonnell, I.
    Bontemps, S.
    Gusdorf, A.
    Hill, T.
    Gueth, F.
    Peretto, N.
    Duarte-Cabral, A.
    Stephan, G.
    Schilke, P.
    Csengeri, T.
    Luong, Q. Nguyen
    Lis, D. C.
    ASTRONOMY & ASTROPHYSICS, 2014, 570
  • [47] The role of low-mass star clusters in massive star formation. The Orion case
    Rivilla, V. M.
    Martin-Pintado, J.
    Jimenez-Serra, I.
    Rodriguez-Franco, A.
    ASTRONOMY & ASTROPHYSICS, 2013, 554
  • [48] Massive Star Formation Starts in Subvirial Dense Clumps Unless Resisted by Strong Magnetic Fields
    Wang, Ke
    Wang, Yueluo
    Xu, Fengwei
    ASTROPHYSICAL JOURNAL LETTERS, 2024, 974 (01)
  • [49] Formation of Massive Protostellar Clusters-Observations of Massive 70 μm Dark Molecular Clouds
    Li, Shanghuo
    Zhang, Qizhou
    Pillai, Thushara
    Stephens, Ian W.
    Wang, Junzhi
    Li, Fei
    ASTROPHYSICAL JOURNAL, 2019, 886 (02)
  • [50] DR 21(OH): A HIGHLY FRAGMENTED, MAGNETIZED, TURBULENT DENSE CORE
    Girart, J. M.
    Frau, P.
    Zhang, Q.
    Koch, P. M.
    Qiu, K.
    Tang, Y. -W.
    Lai, S. -P.
    Ho, P. T. P.
    ASTROPHYSICAL JOURNAL, 2013, 772 (01)