Unveiling the Formation of the Massive DR21 Ridge

被引:11
作者
Bonne, L. [1 ]
Bontemps, S. [2 ]
Schneider, N. [3 ]
Simon, R. [3 ]
Clarke, S. D. [4 ]
Csengeri, T. [2 ]
Chambers, E. [1 ]
Graf, U. [3 ]
Jackson, J. M. [1 ,5 ]
Klein, R. [1 ]
Okada, Y. [3 ]
Tielens, A. G. G. M. [6 ,7 ]
Tiwari, M. [6 ]
机构
[1] NASA Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94045 USA
[2] Univ Bordeaux, Lab Astrophys Bordeaux, CNRS, B18N,Allee Geoffroy St Hilaire, F-33615 Pessac, France
[3] Univ Cologne, Phys Inst 1, Zulpicher Str 77, D-50937 Cologne, Germany
[4] Acad Sinica, Inst Astron & Astrophys, Taipei, Taiwan
[5] Green Bank Observ, POB 2, Green Bank, WV 24944 USA
[6] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
[7] Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
关键词
CLOUD-CLOUD COLLISIONS; UNDERSTANDING STAR-FORMATION; CYGNUS-X REGION; MOLECULAR CLOUDS; EARLIEST PHASES; MAGNETIC-FIELDS; GRAVITATIONAL COLLAPSE; INITIAL CONDITIONS; INTERMEDIATE-MASS; GLOBAL COLLAPSE;
D O I
10.3847/1538-4357/acd536
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present new (CO)-C-13 (1-0), (CO)-O-18 (1-0), HCO+ (1-0), and (HCO+)-C-13 (1-0) maps from the IRAM 30 m telescope and a spectrally resolved [C ii] 158 & mu;m map observed with the SOFIA telescope toward the massive DR21 cloud. This traces the kinematics from low- to high-density gas in the cloud, which allows us to constrain the formation scenario of the high-mass star-forming DR21 ridge. The molecular line data reveal that the subfilaments are systematically redshifted relative to the dense ridge. We demonstrate that [C ii] unveils the surrounding CO-poor gas of the dense filaments in the DR21 cloud. We also show that this surrounding gas is organized in a flattened cloud with curved redshifted dynamics perpendicular to the ridge. The subfilaments thus form in this curved and flattened mass reservoir. A virial analysis of the different lines indicates that self-gravity should drive the evolution of the ridge and surrounding cloud. Combining all results, we propose that bending of the magnetic field, due to the interaction with a mostly atomic colliding cloud, explains the velocity field and resulting mass accretion on the ridge. This is remarkably similar to what was found for at least two nearby low-mass filaments. We tentatively propose that this scenario might be a widespread mechanism to initiate star formation in the Milky Way. However, in contrast to low-mass clouds, gravitational collapse plays a role on the parsec scale of the DR21 ridge because of the higher density. This allows more effective mass collection at the centers of collapse and should facilitate massive cluster formation.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Unveiling the Initial Conditions of Open Star Cluster Formation
    Hao, C. J.
    Xu, Y.
    Hou, L. G.
    Lin, Z. H.
    Li, Y. J.
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2023, 23 (07)
  • [32] PHYSICAL CONDITIONS OF THE EARLIEST PHASES OF MASSIVE STAR FORMATION: SINGLE-DISH AND INTERFEROMETRIC OBSERVATIONS OF AMMONIA AND CCS IN INFRARED DARK CLOUDS
    Dirienzo, William J.
    Brogan, Crystal
    Indebetouw, Remy
    Chandler, Claire J.
    Friesen, Rachel K.
    Devine, Kathryn E.
    ASTRONOMICAL JOURNAL, 2015, 150 (05)
  • [33] Chemical evolution in the early phases of massive star formation II. Deuteration
    Gerner, T.
    Shirley, Y. L.
    Beuther, H.
    Semenov, D.
    Linz, H.
    Albertsson, T.
    Henning, Th.
    ASTRONOMY & ASTROPHYSICS, 2015, 579
  • [34] SiO excitation from dense shocks in the earliest stages of massive star formation
    Leurini, S.
    Codella, C.
    Lopez-Sepulcre, A.
    Gusdorf, A.
    Csengeri, T.
    Anderl, S.
    ASTRONOMY & ASTROPHYSICS, 2014, 570
  • [35] Efficient formation of massive galaxies at cosmic dawn by feedback-free starbursts
    Dekel, Avishai
    Sarkar, Kartick C.
    Birnboim, Yuval
    Mandelker, Nir
    Li, Zhaozhou
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 523 (03) : 3201 - 3218
  • [36] Star formation in a high-pressure environment: an SMA view of the Galactic Centre dust ridge
    Walker, D. L.
    Longmore, S. N.
    Zhang, Q.
    Battersby, C.
    Keto, E.
    Kruijssen, J. M. D.
    Ginsburg, A.
    Lu, X.
    Henshaw, J. D.
    Kauffmann, J.
    Pillai, T.
    Mills, E. A. C.
    Walsh, A. J.
    Bally, J.
    Ho, L. C.
    Immer, K.
    Johnston, K. G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (02) : 2373 - 2388
  • [37] Theoretical Models of Massive Star Formation: Predictions for the Circumstellar Environment of Massive Stars
    Krumholz, M. R.
    CIRCUMSTELLAR DYNAMICS AT HIGH RESOLUTION, 2012, 464 : 339 - 350
  • [38] The formation of massive molecular filaments and massive stars triggered by a magnetohydrodynamic shock wave
    Inoue, Tsuyoshi
    Hennebelle, Patrick
    Fukui, Yasuo
    Matsumoto, Tomoaki
    Iwasaki, Kazunari
    Inutsuka, Shu-ichiro
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2018, 70
  • [39] The role of stellar collisions for the formation of massive stars
    Baumgardt, H.
    Klessen, R. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 413 (03) : 1810 - 1818
  • [40] Formation of massive protostars in atomic cooling haloes
    Becerra, Fernando
    Greif, Thomas H.
    Springel, Volker
    Hernquist, Lars E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 446 (03) : 2380 - 2393