Non-degeneracy of multi-peak solutions for the Schrodinger-Poisson problem

被引:2
作者
Chen, Lin [1 ,2 ]
Ding, Hui-Sheng [1 ,2 ]
Li, Benniao [1 ,2 ]
Ye, Jianghua [3 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
[2] Jiangxi Normal Univ, Jiangxi Prov Ctr Appl Math, Nanchang 330022, Jiangxi, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
关键词
multi-peak solution; non-degeneracy; Schrodinger-Poisson system; GROUND-STATE SOLUTIONS; KLEIN-GORDON-MAXWELL; BOUND-STATES; POSITIVE SOLUTIONS; SOLITARY WAVES; EQUATIONS; SPHERES;
D O I
10.1515/ans-2022-0079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the following Schrodinger-Poisson problem: {-epsilon(2)Delta u + V(y)u + Phi(y)u = vertical bar u vertical bar(p-1)u, y is an element of R-3, -Delta Phi(y) = u(2), y is an element of R-3, where epsilon > 0 is a small parameter, 1 < p < 5, and V(y) is a potential function. We construct multi-peak solution concentrating at the critical points of V(y) through the Lyapunov-Schmidt reduction method. Moreover, by using blow-up analysis and local Pohozaev identities, we prove that the multi-peak solution we construct is non-degenerate. To our knowledge, it seems be the first non-degeneracy result on the Schodinger-Poisson system.
引用
收藏
页数:17
相关论文
共 29 条
[1]   Schrodinger-Poisson equations without Ambrosetti-Rabinowitz condition [J].
Alves, Claudianor O. ;
Soares Souto, Marco Aurelio ;
Soares, Sergio H. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) :584-592
[2]  
Ambrosetti A., 2006, PERTURBATION METHODS
[3]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[4]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[5]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[6]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[7]  
Cao D, 2021, CAM ST AD M, P1, DOI 10.1017/9781108872638
[8]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[9]   Standing waves in the Maxwell-Schrodinger equation and an optimal configuration problem [J].
D'Aprile, T ;
Wei, JC .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (01) :105-137
[10]   On bound states concentrating on spheres for the Maxwell-Schrodinger equation [J].
D'Aprile, T ;
Wei, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) :321-342