A model-based adaptive control method for real-time hybrid simulation

被引:1
|
作者
Ning, Xizhan [1 ,2 ]
Huang, Wei [1 ]
Xu, Guoshan [3 ,4 ,5 ]
Wang, Zhen [6 ]
Zheng, Lichang [3 ]
机构
[1] Huaqiao Univ, Coll Civil Engn, Xiamen 361021, Peoples R China
[2] Huaqiao Univ, Key Lab Intelligent Infrastruct & Monitoring Fujia, Xiamen 361021, Peoples R China
[3] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
[4] Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav & Control, Harbin 150090, Peoples R China
[5] Minist Ind & Informat Technol, Key Lab Intelligent Disaster Mitigat, Harbin 150090, Peoples R China
[6] Wuhan Univ Technol, Sch Civil Engn & Architecture, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
benchmark; Kalman filter; model -based adaptive control; real-time hybrid simulation; time delay; COMPENSATION METHOD; DELAY COMPENSATION; STABILITY ANALYSIS; ACTUATOR DELAY; SYSTEM;
D O I
10.12989/sss.2023.31.5.437
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.
引用
收藏
页码:437 / 454
页数:18
相关论文
共 50 条
  • [31] Discrete-Time Compensation Technique for Real-Time Hybrid Simulation
    Hayati, Saeid
    Song, Wei
    ROTATING MACHINERY, HYBRID TEST METHODS, VIBRO-ACOUSTICS AND LASER VIBROMETRY, VOL 8, 2016, : 351 - 358
  • [32] Deep Reinforcement Learning-Based Control for Real-Time Hybrid Simulation of Civil Structures
    Nino, Andres Felipe
    Palacio-Betancur, Alejandro
    Miranda-Chiquito, Piedad
    Amaya, Juan David
    Silva, Christian E.
    Gutierrez Soto, Mariantonieta
    Felipe Giraldo, Luis
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2025,
  • [33] Comparison of explicit integration algorithms for real-time hybrid simulation
    Zhu, Fei
    Wang, Jin-Ting
    Jin, Feng
    Gui, Yao
    BULLETIN OF EARTHQUAKE ENGINEERING, 2016, 14 (01) : 89 - 114
  • [34] Real-Time Hybrid Simulation With EGO-Based Online Model Updating
    Zhong, Weipeng
    Peng, Changle
    Guo, Tong
    Chen, Zaixian
    Chen, Cheng
    Xu, Weijie
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2025, : 1759 - 1774
  • [35] Real-time hybrid testing using model-based delay compensation
    Carrion, Juan E.
    Spencer, B. F., Jr.
    SMART STRUCTURES AND SYSTEMS, 2008, 4 (06) : 809 - 828
  • [36] Adaptive parameter calibration of UKF towards optimal model updating in real-time hybrid simulation
    Zhong, Weipeng
    Peng, Changle
    Chen, Zaixian
    Chen, Cheng
    Xu, Weijie
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2025, 191
  • [37] A Novel Actuation Dynamics Adaptive Compensation Strategy for Real-Time Hybrid Simulation Based on Unscented Kalman Filter
    Huang, Wei
    Ning, Xizhan
    Ding, Yong
    Wang, Zhen
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2023, 23 (10)
  • [38] Exploration of instantaneous frequency for local control assessment in real-time hybrid simulation
    Xu, Weijie
    Peng, Changle
    Guo, Tong
    Chen, Cheng
    EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION, 2024, 23 (04) : 995 - 1008
  • [39] Sliding mode control design for the benchmark problem in real-time hybrid simulation
    Li, Hongwei
    Maghareh, Amin
    Montoya, Herta
    Uribe, Johnny Wilfredo Condori
    Dyke, Shirley J.
    Xu, Zhaodong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 151
  • [40] A state space-based explicit integration method for real-time hybrid simulation
    Liu, Yanhui
    Goorts, Kevin
    Ashasi-Sorkhabi, Ali
    Mercan, Oya
    Narasimhan, Sriram
    STRUCTURAL CONTROL & HEALTH MONITORING, 2016, 23 (04) : 641 - 658