Corrosion inhibition study of 6061 aluminium alloy in the presence of ethyl 5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazo-le-4-carboxylate (NTE) in hydrochloric acid

被引:9
作者
Raviprabha, K. [1 ]
Bhat, Ramesh S. [2 ]
Bhat, Subrahmanya I. [2 ]
Nagaraj, P. [3 ]
Jyothi, K. [4 ]
机构
[1] NITTE Deemed Univ, NMAM Inst Technol NMAMIT, Dept Chem, Nitte 574110, India
[2] Shri Madhwa Vadiraja Inst Technol & Management, Dept Chem, Udupi 574115, Karnataka, India
[3] Yenepoya Inst Technol, Dept Chem, Mangaluru, Karnataka, India
[4] St Joseph Engn Coll, Dept Chem, Mangalore 575028, India
关键词
Corrosion; Chemisorption; Aluminium; Hydrochloric acid; Surface morphology; ENVIRONMENTALLY FRIENDLY INHIBITOR; MILD-STEEL; TRIAZOLE DERIVATIVES; BEHAVIOR; PERFORMANCE; ADSORPTION; PROTECTION; COPPER;
D O I
10.1016/j.heliyon.2023.e16036
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The inhibitory effect of an ethyl 5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazole-4-carboxylate (NTE) was investigated on the corrosion of Al (AA6061) alloy at different temperatures (303-333 K) by Electrochemical impedance spectroscopy (EIS), Potentiodynamic polarization (PDP), and weight loss techniques. It was found that NTE molecules protect the aluminium against corrosion and its ability increases with increasing concentrations, and temperature resulting in better inhibitory performance. At all concentrations and temperature ranges, NTE exhibited mixed inhibitor action and complied with the Langmuir isotherm. At 100 ppm and 333 K, NTE demonstrated the highest inhibition efficiency (94%). The EIS results and the PDP results had a good level of concordance. A suitable mechanism for the corrosion prevention of AA6061 alloy was proposed. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to confirm the adsorption of an inhibitor onto the aluminium alloy surface. The electrochemical results were validated by morphological examination, which demonstrated that NTE prevents uniform corrosion of aluminium alloy in acid chloride solutions. The activation energy and thermodynamic parameters were computed, and the results were discussed.
引用
收藏
页数:14
相关论文
共 52 条