Meta semi-supervised medical image segmentation with label hierarchy

被引:4
作者
Xu, Hai [1 ]
Xie, Hongtao [1 ]
Tan, Qingfeng [2 ]
Zhang, Yongdong [1 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230026, Anhui, Peoples R China
[2] Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou 511442, Guangdong, Peoples R China
关键词
Medical image segmentation; Semi-supervised learning; Consistency regularization; Domain generalization;
D O I
10.1007/s13755-023-00222-1
中图分类号
R-058 [];
学科分类号
摘要
Semi-supervised learning (SSL) has attracted increasing attention in medical image segmentation, where the mainstream usually explores perturbation-based consistency as a regularization to leverage unlabelled data. However, unlike directly optimizing segmentation task objectives, consistency regularization is a compromise by incorporating invariance towards perturbations, and inevitably suffers from noise in self-predicted targets. The above issues result in a knowledge gap between supervised guidance and unsupervised regularization. To bridge the knowledge gap, this work proposes a meta-based semi-supervised segmentation framework with the exploitation of label hierarchy. Two main prominent components named Divide and Generalize, and Label Hierarchy, are built in this work. Concretely, rather than merging all knowledge indiscriminately, we dynamically divide consistency regularization from supervised guidance as different domains. Then, a domain generalization technique is introduced with a meta-based optimization objective which ensures the update on supervised guidance should generalize to the consistency regularization, thereby bridging the knowledge gap. Furthermore, to alleviate the negative impact of noise in self-predicted targets, we propose to distill the noisy pixel-level consistency by exploiting label hierarchy and extracting hierarchical consistencies. Comprehensive experiments on two public medical segmentation benchmarks demonstrate the superiority of our framework to other semi-supervised segmentation methods, with new state-of-the-art results.
引用
收藏
页数:15
相关论文
共 56 条
[1]  
Balaji Y, 2018, ADV NEUR IN, V31
[2]  
Ben-David S, 2009, P MACHINE LEARNING R, P25
[3]   Albumentations: Fast and Flexible Image Augmentations [J].
Buslaev, Alexander ;
Iglovikov, Vladimir I. ;
Khvedchenya, Eugene ;
Parinov, Alex ;
Druzhinin, Mikhail ;
Kalinin, Alexandr A. .
INFORMATION, 2020, 11 (02)
[4]   Semi-Supervised 3D Medical Image Segmentation Based on Dual-Task Consistent Joint Learning and Task-Level Regularization [J].
Chen, Qi-Qi ;
Sun, Zhao-Hui ;
Wei, Chuan-Feng ;
Wu, Edmond Q. ;
Ming, Dong .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (04) :2457-2467
[5]   Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis [J].
Cheplygina, Veronika ;
de Bruijne, Marleen ;
Pluim, Josien P. W. .
MEDICAL IMAGE ANALYSIS, 2019, 54 :280-296
[6]  
Finn C, 2017, PR MACH LEARN RES, V70
[7]   Domain Generalization for Object Recognition with Multi-task Autoencoders [J].
Ghifary, Muhammad ;
Kleijn, W. Bastiaan ;
Zhang, Mengjie ;
Balduzzi, David .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2551-2559
[8]   Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels [J].
Han, Bo ;
Yao, Quanming ;
Yu, Xingrui ;
Niu, Gang ;
Xu, Miao ;
Hu, Weihua ;
Tsang, Ivor W. ;
Sugiyama, Masashi .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges [J].
Hesamian, Mohammad Hesam ;
Jia, Wenjing ;
He, Xiangjian ;
Kennedy, Paul .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) :582-596