Geometric mechanics of ordered and disordered kirigami

被引:6
作者
Chaudhary, G. [1 ]
Niu, L. [2 ]
Han, Q. [3 ]
Lewicka, M. [4 ]
Mahadevan, L. [1 ,2 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02143 USA
[3] Univ Notre Dame, Dept Math, South Bend, IN 46556 USA
[4] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2023年 / 479卷 / 2274期
关键词
kirigami; geometric mechanics; origami; thin sheets;
D O I
10.1098/rspa.2022.0822
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The presence of incomplete cuts in a thin planar sheet can dramatically alter its mechanical and geometrical response to loading, as the cuts allow the sheet to deform strongly in the third dimension, most beautifully demonstrated in kirigami art-forms. We use numerical experiments to characterize the geometric mechanics of kirigamized sheets as a function of the number, size and orientation of cuts. We show that the geometry of mechanically loaded sheets can be approximated as a composition of simple developable units: flats, cylinders, cones and compressed Elasticae. This geometric construction yields scaling laws for the mechanical response of the sheet in both the weak and strongly deformed limit. In the ultimately stretched limit, this further leads to a theorem on the nature and form of geodesics in an arbitrary kirigami pattern, consistent with observations and simulations. Finally, we show that by varying the shape and size of the geodesic in a kirigamized sheet, we can control the deployment trajectory of the sheet, and thence its functional properties as an exemplar of a tunable structure that can serve as a robotic gripper, a soft light window or the basis for a physically unclonable device. Overall our study of disordered kirigami sets the stage for controlling the shape and shielding the stresses in thin sheets using cuts.
引用
收藏
页数:17
相关论文
共 23 条
[1]   Flexible mechanical metamaterials [J].
Bertoldi, Katia ;
Vitelli, Vincenzo ;
Christensen, Johan ;
van Hecke, Martin .
NATURE REVIEWS MATERIALS, 2017, 2 (11)
[2]   Graphene kirigami [J].
Blees, Melina K. ;
Barnard, Arthur W. ;
Rose, Peter A. ;
Roberts, Samantha P. ;
McGill, Kathryn L. ;
Huang, Pinshane Y. ;
Ruyack, Alexander R. ;
Kevek, Joshua W. ;
Kobrin, Bryce ;
Muller, David A. ;
McEuen, Paul L. .
NATURE, 2015, 524 (7564) :204-+
[3]   Compact reconfigurable kirigami [J].
Choi, Gary P. T. ;
Dudte, Levi H. ;
Mahadevan, L. .
PHYSICAL REVIEW RESEARCH, 2021, 3 (04)
[4]   Programming shape using kirigami tessellations [J].
Choi, Gary P. T. ;
Dudte, Levi H. ;
Mahadevan, L. .
NATURE MATERIALS, 2019, 18 (09) :999-+
[5]   Kirigami actuators [J].
Dias, Marcelo A. ;
McCarron, Michael P. ;
Rayneau-Kirkhope, Daniel ;
Hanakata, Paul Z. ;
Campbell, David K. ;
Park, Harold S. ;
Holmes, Douglas P. .
SOFT MATTER, 2017, 13 (48) :9087-9092
[6]   Physical unclonable functions [J].
Gao, Yansong ;
Al-Sarawi, Said F. ;
Abbott, Derek .
NATURE ELECTRONICS, 2020, 3 (02) :81-91
[7]  
Han Q., 2022, ROCKY MT J MATH
[8]   Boundary curvature guided programmable shape-morphing kirigami sheets [J].
Hong, Yaoye ;
Chi, Yinding ;
Wu, Shuang ;
Li, Yanbin ;
Zhu, Yong ;
Yin, Jie .
NATURE COMMUNICATIONS, 2022, 13 (01)
[9]  
Hui CY, 1998, INT J FRACTURE, V93, P409
[10]  
Inglis C.E., 1913, T I NAVAL ARCHITEC 1, V55, P219