Revolutionizing Energy Storage: The Rise of Silicon-based Solutions

被引:3
作者
Sahayaraj, A. Felix [1 ]
机构
[1] KIT Kalaignarkarunanidhi Inst Technol, Dept Mech Engn, Coimbatore 641402, Tamil Nadu, India
关键词
Silicon-based energy storage; Sustainable energy; Energy density; Energy delivery rate; Review; LITHIUM ION BATTERIES; CARBON MATERIALS; RECENT PROGRESS; SYSTEM; PERSPECTIVES; ELECTRODE; ANODE; TECHNOLOGIES; DENSITY;
D O I
10.1007/s12633-023-02417-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon-based energy storage systems are emerging as promising alternatives to the traditional energy storage technologies. This review provides a comprehensive overview of the current state of research on silicon-based energy storage systems, including silicon-based batteries and supercapacitors. This article discusses the unique properties of silicon, which make it a suitable material for energy storage, and highlights the recent advances in the development of silicon-based energy storage systems. The article also identifies some of the challenges that must be overcome to fully realize the potential of silicon-based energy storage systems and suggests areas for future research. In conclusion, the potential impact of silicon-based energy storage systems on the energy landscape and environment highlights the importance of continued research and development in this field.
引用
收藏
页码:5467 / 5483
页数:17
相关论文
共 119 条
[1]  
Amin R., 2020, Carbon nanotubes-redefining the world of electronics, V10, P5772
[2]   The Role of Balancing Nanostructured Silicon Anodes and NMC Cathodes in Lithium-Ion Full-Cells with High Volumetric Energy Density [J].
Baasner, Anne ;
Reuter, Florian ;
Seidel, Matthias ;
Krause, Andreas ;
Pflug, Erik ;
Haertel, Paul ;
Doerfler, Susanne ;
Abendroth, Thomas ;
Althues, Holger ;
Kaskel, Stefan .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (02)
[3]  
Balakrishnan N. T., 2021, Electrospinning for Advanced Energy Storage Applications, P1
[4]   An overview of the environmental, economic, and material developments of the solar and wind sources coupled with the energy storage systems [J].
Balali, Mohammad Hasan ;
Nouri, Narjes ;
Omrani, Emad ;
Nasiri, Adel ;
Otieno, Wilkistar .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2017, 41 (14) :1948-1962
[5]   In Situ Atomic Force Microscopy of Lithiation and Delithiation of Silicon Nanostructures for Lithium Ion Batteries [J].
Becker, Collin R. ;
Strawhecker, Kenneth E. ;
McAllister, Quinn P. ;
Lundgren, Cynthia A. .
ACS NANO, 2013, 7 (10) :9173-9182
[6]   Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials [J].
Benoy, Santhi Maria ;
Pandey, Mayank ;
Bhattacharjya, Dhrubajyoti ;
Saikia, Binoy K. .
JOURNAL OF ENERGY STORAGE, 2022, 52
[7]   Polymer derived SiOC and SiCN ceramics for electrochemical energy storage: A perspective [J].
Bin Mujib, Shakir ;
Singh, Gurpreet .
INTERNATIONAL JOURNAL OF CERAMIC ENGINEERING AND SCIENCE, 2022, 4 (01) :4-9
[8]   Nanocrystalline iron oxide based electroactive materials in lithium ion batteries: the critical role of crystallite size, morphology, and electrode heterostructure on battery relevant electrochemistry [J].
Bruck, Andrea M. ;
Cama, Christina A. ;
Gannett, Cara N. ;
Marschilok, Amy C. ;
Takeuchi, Esther S. ;
Takeuchi, Kenneth J. .
INORGANIC CHEMISTRY FRONTIERS, 2016, 3 (01) :26-40
[9]   Enabling High-Energy Solid-State Batteries with Stable Anode Interphase by the Use of Columnar Silicon Anodes [J].
Cangaz, Sahin ;
Hippauf, Felix ;
Reuter, Florian Steffen ;
Doerfler, Susanne ;
Abendroth, Thomas ;
Althues, Holger ;
Kaskel, Stefan .
ADVANCED ENERGY MATERIALS, 2020, 10 (34)
[10]   Chemical processes for the recovery of valuable metals from spent nickel metal hydride batteries: A review [J].
Cassayre, L. ;
Guzhov, B. ;
Zielinski, M. ;
Biscans, B. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 170