Predicting miRNA-Disease Associations via Node-Level Attention Graph Auto-Encoder

被引:29
作者
Zhang, Huizhe [1 ]
Fang, Juntao [1 ]
Sun, Yuping [1 ]
Xie, Guobo [1 ]
Lin, Zhiyi [1 ]
Gu, Guosheng [1 ]
机构
[1] Guangdong Univ Technol, Sch Comp Sci, Guangzhou 510000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Diseases; Semantics; Databases; Sun; RNA; Benchmark testing; Task analysis; miRNA; disease; deep learning; attention mechanisms; graph auto-encoder; MICRORNAS;
D O I
10.1109/TCBB.2022.3170843
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Previous studies have confirmed microRNA (miRNA), small single-stranded non-coding RNA, participates in various biological processes and plays vital roles in many complex human diseases. Therefore, developing an efficient method to infer potential miRNA disease associations could greatly help understand operational mechanisms for diseases at the molecular level. However, during these early stages for miRNA disease prediction, traditional biological experiments are laborious and expensive. Therefore, this study proposes a novel method called AGAEMD (node-level Attention Graph Auto-Encoder to predict potential MiRNA Disease associations). We first create a heterogeneous matrix incorporating miRNA similarity, disease similarity, and known miRNA-disease associations. Then these matrixes are input into a node-level attention encoder-decoder network which utilizes low dimensional dense embeddings to represent nodes and calculate association scores. To verify the effectiveness of the proposed method, we conduct a series of experiments on two benchmark datasets (the Human MicroRNA Disease Database v2.0 and v3.2) and report the averages over 10 runs in comparison with several state-of-the-art methods. Experimental results have demonstrated the excellent performance of AGAEMD in comparison with other methods. Three important diseases (Colon Neoplasms, Lung Neoplasms, Lupus Vulgaris) were applied in case studies. The results comfirm the reliable predictive performance of AGAEMD.
引用
收藏
页码:1308 / 1318
页数:11
相关论文
共 50 条
  • [31] SGNNMD: signed graph neural network for predicting deregulation types of miRNA-disease associations
    Zhang, Guangzhan
    Li, Menglu
    Deng, Huan
    Xu, Xinran
    Liu, Xuan
    Zhang, Wen
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [32] GCNPCA: miRNA-Disease Associations Prediction Algorithm Based on Graph Convolutional Neural Networks
    Liu, Jiwen
    Kuang, Zhufang
    Deng, Lei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (02) : 1041 - 1052
  • [33] A Multi-Relational Graph Encoder Network for Fine-Grained Prediction of MiRNA-Disease Associations
    Yu, Shengpeng
    Wang, Hong
    Li, Jing
    Zhao, Jun
    Liang, Cheng
    Sun, Yanshen
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (01) : 45 - 56
  • [34] Matrix reconstruction with reliable neighbors for predicting potential MiRNA-disease associations
    Feng, Hailin
    Jin, Dongdong
    Li, Jian
    Li, Yane
    Zou, Quan
    Liu, Tongcun
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [35] Deep-belief network for predicting potential miRNA-disease associations
    Chen, Xing
    Li, Tian-Hao
    Zhao, Yan
    Wang, Chun-Chun
    Zhu, Chi-Chi
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03)
  • [36] Identification of miRNA-disease associations via multiple information integration with Bayesian ranking
    Zhu, Chi-Chi
    Wang, Chun-Chun
    Zhao, Yan
    Zuo, Mingcheng
    Chen, Xing
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [37] Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model
    Zhang, Lei
    Liu, Bailong
    Li, Zhengwei
    Zhu, Xiaoyan
    Liang, Zhizhen
    An, Jiyong
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [38] Predicting miRNA-Disease Associations From miRNA-Gene-Disease Heterogeneous Network With Multi-Relational Graph Convolutional Network Model
    Peng, Wei
    Che, Zicheng
    Dai, Wei
    Wei, Shoulin
    Lan, Wei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (06) : 3363 - 3375
  • [39] EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
    Pang, Shanchen
    Zhuang, Yu
    Wang, Xinzeng
    Wang, Fuyu
    Qiao, Sibo
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [40] Variational graph auto-encoders for miRNA-disease association prediction
    Ding, Yulian
    Tian, Li-Ping
    Lei, Xiujuan
    Liao, Bo
    Wu, Fang-Xiang
    METHODS, 2021, 192 : 25 - 34