Electronic Health Record-Based Absolute Risk Prediction Model for Esophageal Cancer in the Chinese Population: Model Development and External Validation

被引:7
作者
Han, Yuting [1 ]
Zhu, Xia [2 ,3 ]
Hu, Yizhen [1 ]
Yu, Canqing [1 ,4 ]
Guo, Yu [5 ]
Hang, Dong [2 ,3 ]
Pang, Yuanjie [1 ]
Pei, Pei [5 ]
Ma, Hongxia [2 ,3 ]
Sun, Dianjianyi [1 ,4 ]
Yang, Ling [6 ,7 ,8 ]
Chen, Yiping [6 ,7 ,8 ]
Du, Huaidong [6 ,7 ,8 ]
Yu, Min [9 ]
Chen, Junshi [10 ]
Chen, Zhengming [7 ,8 ]
Huo, Dezheng [1 ,11 ]
Jin, Guangfu [2 ,3 ]
Lv, Jun [1 ,4 ]
Hu, Zhibin [2 ,3 ]
Shen, Hongbing [2 ,3 ]
Li, Liming [1 ,4 ]
机构
[1] Peking Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Beijing, Peoples R China
[2] Nanjing Med Univ, Sch Publ Hlth, Ctr Global Hlth, Dept Epidemiol, Nanjing, Peoples R China
[3] Nanjing Med Univ, Collaborat Innovat Ctr Canc Med, China Int Cooperat Ctr Environm & Human Hlth, Jiangsu Key Lab Canc Biomarkers Prevent & Treatme, Nanjing, Peoples R China
[4] Peking Univ, Ctr Publ Hlth & Epidem Preparedness & Response, Beijing, Peoples R China
[5] Chinese Acad Med Sci, Beijing, Peoples R China
[6] Univ Oxford, Med Res Council, Populat Hlth Res Unit, Oxford, England
[7] Univ Oxford, Clin Trial Serv Unit, Oxford, England
[8] Univ Oxford, Nuffield Dept Populat Hlth, Epidemiol Studies Unit, Oxford, England
[9] Zhejiang Ctr Dis Control & Prevent, Hangzhou, Peoples R China
[10] China Natl Ctr Food Safety Risk Assessment, Beijing, Peoples R China
[11] Univ Chicago, Dept Publ Hlth Sci, Chicago, IL USA
来源
JMIR PUBLIC HEALTH AND SURVEILLANCE | 2023年 / 9卷 / 01期
基金
国家重点研发计划; 中国博士后科学基金; 英国惠康基金; 中国国家自然科学基金;
关键词
esophageal cancer; prediction model; absolute risk; China; prospective cohort; screening; primary prevention; development; external validation; electronic health record; SQUAMOUS-CELL CARCINOMA; 0.5 MILLION PEOPLE; BIOBANK;
D O I
10.2196/43725
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: China has the largest burden of esophageal cancer (EC). Prediction models can be used to identify high-risk individuals for intensive lifestyle interventions and endoscopy screening. However, the current prediction models are limited by small sample size and a lack of external validation, and none of them can be embedded into the booming electronic health records (EHRs) in China.Objective: This study aims to develop and validate absolute risk prediction models for EC in the Chinese population. In particular, we assessed whether models that contain only EHR-available predictors performed well.Methods: A prospective cohort recruiting 510,145 participants free of cancer from both high EC-risk and low EC-risk areas in China was used to develop EC models. Another prospective cohort of 18,441 participants was used for validation. A flexible parametric model was used to develop a 10-year absolute risk model by considering the competing risks (full model). The full model was then abbreviated by keeping only EHR-available predictors. We internally and externally validated the models by using the area under the receiver operating characteristic curve (AUC) and calibration plots and compared them based on classification measures.Results: During a median of 11.1 years of follow-up, we observed 2550 EC incident cases. The models consisted of age, sex, regional EC-risk level (high-risk areas: 2 study regions; low-risk areas: 8 regions), education, family history of cancer (simple model), smoking, alcohol use, BMI (intermediate model), physical activity, hot tea consumption, and fresh fruit consumption (full model). The performance was only slightly compromised after the abbreviation. The simple and intermediate models showed good calibration and excellent discriminating ability with AUCs (95% CIs) of 0.822 (0.783-0.861) and 0.830 (0.792-0.867) in the external validation and 0.871 (0.858-0.884) and 0.879 (0.867-0.892) in the internal validation, respectively.Conclusions: Three nested 10-year EC absolute risk prediction models for Chinese adults aged 30-79 years were developed and validated, which may be particularly useful for populations in low EC-risk areas. Even the simple model with only 5 predictors available from EHRs had excellent discrimination and good calibration, indicating its potential for broader use in tailored EC prevention. The simple and intermediate models have the potential to be widely used for both primary and secondary prevention of EC.
引用
收藏
页数:14
相关论文
共 33 条
[1]  
[Anonymous], China Kadoorie Biobank
[2]   Global burden of oesophageal and gastric cancer by histology and subsite in 2018 [J].
Arnold, Melina ;
Ferlay, Jacques ;
Henegouwen, Mark I. van Berge ;
Soerjomataram, Isabelle .
GUT, 2020, 69 (09) :1564-1571
[3]   Global incidence of oesophageal cancer by histological subtype in 2012 [J].
Arnold, Melina ;
Soerjomataram, Isabelle ;
Ferlay, Jacques ;
Forman, David .
GUT, 2015, 64 (03) :381-387
[4]   Expert consensus on the clinical application of high-frequency electrosurgery in digestive endoscopy (2020, Shanghai) [J].
Bai, Yu ;
Yang, Fan ;
Liu, Cui ;
Li, De Feng ;
Wang, Shi ;
Lin, Rong ;
Ding, Zhen ;
Meng, Wen Bo ;
Li, Zhao Shen ;
Linghu, En Qiang .
JOURNAL OF DIGESTIVE DISEASES, 2022, 23 (01) :2-12
[5]   Risk prediction of esophageal squamous-cell carcinoma with common genetic variants and lifestyle factors in Chinese population [J].
Chang, Jiang ;
Huang, Ying ;
Wei, Lixuan ;
Ma, Baoshan ;
Miao, Xiaoping ;
Li, Yun ;
Hu, Zhibin ;
Yu, Dianke ;
Jia, Weihua ;
Liu, Yu ;
Tan, Wen ;
He, Zhonghu ;
Ke, Yang ;
Wu, Tangchun ;
Shen, Hongbing ;
Zeng, Yixin ;
Wu, Chen ;
Lin, Dongxin .
CARCINOGENESIS, 2013, 34 (08) :1782-1786
[6]  
Chen Ru, 2019, Zhonghua Yufang Yixue Zazhi, V53, P1094, DOI 10.3760/cma.j.issn.0253-9624.2019.11.004
[7]   Selection of high-risk individuals for esophageal cancer screening: A prediction model of esophageal squamous cell carcinoma based on a multicenter screening cohort in rural China [J].
Chen, Wanqing ;
Li, He ;
Ren, Jiansong ;
Zheng, Rongshou ;
Shi, Jufang ;
Li, Jiang ;
Cao, Maomao ;
Sun, Dianqin ;
He, Siyi ;
Sun, Xibin ;
Cao, Xiaoqin ;
Feng, Shixian ;
Zhou, Jinyi ;
Luo, Pengfei ;
Zha, Zhenqiu ;
Jia, Shangchun ;
Wang, Jialin ;
Ma, Hengmin ;
Zeng, Hongmei ;
Canfell, Karen ;
He, Jie .
INTERNATIONAL JOURNAL OF CANCER, 2021, 148 (02) :329-339
[8]   China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up [J].
Chen, Zhengming ;
Chen, Junshi ;
Collins, Rory ;
Guo, Yu ;
Peto, Richard ;
Wu, Fan ;
Li, Liming .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2011, 40 (06) :1652-1666
[9]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1038/bjc.2014.639, 10.7326/M14-0697, 10.1016/j.jclinepi.2014.11.010, 10.1186/s12916-014-0241-z, 10.7326/M14-0698, 10.1111/eci.12376, 10.1136/bmj.g7594, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025]
[10]   World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions [J].
Di Angelantonio, Emanuele ;
Kaptoge, Stephen ;
Pennells, Lisa ;
De Bacquer, Dirk ;
Cooney, Marie Therese ;
Kavousi, Maryam ;
Stevens, Gretchen ;
Riley, Leanne ;
Savin, Stefan ;
Altay, Servet ;
Amouyel, Philippe ;
Assmann, Gerd ;
Bell, Steven ;
Ben-Shlomo, Yoav ;
Berkman, Lisa ;
Beulens, Joline W. ;
Bjorkelund, Cecilia ;
Blaha, Michael J. ;
Blazer, Dan G. ;
Bolton, Thomas ;
Bonita, Ruth ;
Brenner, Beaglehole Hermann ;
Brunner, Eric J. ;
Casiglia, Edoardo ;
Chamnan, Parinya ;
Choi, Yeun-Hyang ;
Chowdhury, Rajiv ;
Coady, Sean ;
Crespo, Carlos J. ;
Cushman, Mary ;
Dagenais, Gilles R. ;
D'Agostino, Ralph B. ;
Daimon, Makoto ;
Davidson, Karina W. ;
Engstrom, Gunnar ;
Fang, Xianghua ;
Ford, Ian ;
Gallacher, John ;
Gansevoort, Ron T. ;
Gaziano, Thomas Andrew ;
Giampaoli, Simona ;
Grandits, Greg ;
Grimsgaard, Sameline ;
Grobbee, Diederick E. ;
Gudnason, Vilmundur ;
Guo, Qi ;
Humphries, Steve ;
Iso, Hiroyasu ;
Jukema, J. Wouter ;
Kauhanen, Jussi .
LANCET GLOBAL HEALTH, 2019, 7 (10) :E1332-E1345