A new lifetime distribution by maximizing entropy: properties and applications

被引:1
作者
Tanak, Ali Khosravi [1 ]
Najafi, Marziyeh [2 ]
Borzadaran, G. R. Mohtashami [3 ]
机构
[1] Velayat Univ, Dept Stat, Iranshahr, Iran
[2] Velayat Univ, Dept Math, Iranshahr, Iran
[3] Ferdowsi Univ Mashhad, Dept Stat, Mashhad, Iran
关键词
beta generalized Weibull distribution; differential equation; hazard rate function; lifetime distribution; maximum entropy principle; WEIBULL DISTRIBUTION; CONSTRAINTS;
D O I
10.1017/S0269964823000062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The principle of maximum entropy is a well-known approach to produce a model for data-generating distributions. In this approach, if partial knowledge about the distribution is available in terms of a set of information constraints, then the model that maximizes entropy under these constraints is used for the inference. In this paper, we propose a new three-parameter lifetime distribution using the maximum entropy principle under the constraints on the mean and a general index. We then present some statistical properties of the new distribution, including hazard rate function, quantile function, moments, characterization, and stochastic ordering. We use the maximum likelihood estimation technique to estimate the model parameters. A Monte Carlo study is carried out to evaluate the performance of the estimation method. In order to illustrate the usefulness of the proposed model, we fit the model to three real data sets and compare its relative performance with respect to the beta generalized Weibull family.
引用
收藏
页码:189 / 206
页数:18
相关论文
共 50 条
  • [1] A new lifetime distribution with applications in inventory and insurance
    Chowdhury, Shovan
    Nanda, Asok K.
    INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT, 2018, 35 (02) : 527 - 544
  • [2] A New Lifetime Distribution: Statistical Inference and it's Applications
    Pandey, Arvind
    Singh, Pawan Kumar
    Saha, Mahendra
    STATISTICS AND APPLICATIONS, 2024, 22 (02): : 91 - 108
  • [3] A new class of cosine trigonometric lifetime distribution with applications
    Kumar, Pankaj
    Sapkota, Laxmi Prasad
    Kumar, Vijay
    Tashkandy, Yusra A.
    Bakr, M. E.
    Balogun, Oluwafemi Samson
    Gemeay, Ahmed M.
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 106 : 664 - 674
  • [4] A New Extension of Chen Distribution with Applications to Lifetime Data
    Bahman Tarvirdizade
    Mohammad Ahmadpour
    Communications in Mathematics and Statistics, 2021, 9 : 23 - 38
  • [5] A New Extension of Chen Distribution with Applications to Lifetime Data
    Tarvirdizade, Bahman
    Ahmadpour, Mohammad
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2021, 9 (01) : 23 - 38
  • [6] New two-parameter XLindley distribution with statistical properties, simulation and applications on lifetime data
    Ibrahim, Muhammad
    Shah, Muhammad Kashif Ali
    Ahsan-ul-Haq, Muhammad
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2025, 45 (01) : 293 - 306
  • [7] THE LOMAX-LINDLEY DISTRIBUTION: PROPERTIES AND APPLICATIONS TO LIFETIME DATA
    Tarvirdizade, Bahman
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (02): : 965 - 983
  • [8] A new three-parameter lifetime distribution
    Abd El-Bar, Ahmed M. T.
    Ragab, I. E.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2018, 9 (04) : 309 - 326
  • [9] A new distribution with four parameters: Properties and applications
    Karakaya, Kadir
    Kinaci, Ismail
    Kus, Coskun
    Akdogan, Yunus
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2023, 41 (02): : 276 - 287
  • [10] A new unit distribution: properties, inference, and applications
    Afify, Ahmed Z.
    Nassar, Mazen
    Kumar, Devendra
    Cordeiro, Gauss M.
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (02)