Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling

被引:8
作者
Djebra, Yanis [1 ,2 ,3 ]
Marin, Thibault [1 ,2 ]
Han, Paul K. [1 ,2 ]
Bloch, Isabelle [3 ,4 ]
El Fakhri, Georges [1 ,2 ]
Ma, Chao [1 ,2 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Gordon Ctr Med Imaging, Boston, MA 02129 USA
[2] Harvard Med Sch, Dept Radiol, Boston, MA 02129 USA
[3] Inst Polytech Paris, LTCI, Telecom Paris, F-91764 Paris, France
[4] Sorbonne Univ, LIP6, CNRS, F-75006 Paris, France
基金
美国国家卫生研究院;
关键词
Constrained image reconstruction; manifold learning; dynamic magnetic resonance imaging; linear tangent space alignment (LTSA); NONLINEAR DIMENSIONALITY REDUCTION; IMAGE-RECONSTRUCTION; MODEL; REGULARIZATION; ACQUISITION; NETWORKS; RECOVERY;
D O I
10.1109/TMI.2022.3207774
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The spatial resolution and temporal frame-rate of dynamic magnetic resonance imaging (MRI) can be improved by reconstructing images from sparsely sampled ${k}$ -space data with mathematical modeling of the underlying spatiotemporal signals. These models include sparsity models, linear subspace models, and non-linear manifold models. This work presents a novel linear tangent space alignment (LTSA) model-based framework that exploits the intrinsic low-dimensional manifold structure of dynamic images for accelerated dynamic MRI. The performance of the proposed method was evaluated and compared to state-of-the-art methods using numerical simulation studies as well as 2D and 3D in vivo cardiac imaging experiments. The proposed method achieved the best performance in image reconstruction among all the compared methods. The proposed method could prove useful for accelerating many MRI applications, including dynamic MRI, multi-parametric MRI, and MR spectroscopic imaging.
引用
收藏
页码:158 / 169
页数:12
相关论文
共 12 条
  • [1] Incremental manifold learning via tangent space alignment
    Liu, Xiaoming
    Yin, Jianwei
    Feng, Zhilin
    Dong, Jinxiang
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2006, 4087 : 107 - 121
  • [2] An improved local tangent space alignment method for manifold learning
    Zhang, Peng
    Qiao, Hong
    Zhang, Bo
    PATTERN RECOGNITION LETTERS, 2011, 32 (02) : 181 - 189
  • [3] A Manifold Learning Algorithm Based on Incremental Tangent Space Alignment
    Tan, Chao
    Ji, Genlin
    CLOUD COMPUTING AND SECURITY, ICCCS 2016, PT II, 2016, 10040 : 541 - 552
  • [4] Joint spectral quantification of MR spectroscopic imaging using linear tangent space alignment-based manifold learning
    Ma, Chao
    Han, Paul Kyu
    Zhuo, Yue
    Djebra, Yanis
    Marin, Thibault
    El Fakhri, Georges
    MAGNETIC RESONANCE IN MEDICINE, 2023, 89 (04) : 1297 - 1313
  • [5] Manifold learning in local tangent space via extreme learning machine
    Wang, Qian
    Wang, Weiguo
    Nian, Rui
    He, Bo
    Shen, Yue
    Bjork, Kaj-Mikael
    Lendasse, Amaury
    NEUROCOMPUTING, 2016, 174 : 18 - 30
  • [6] Manifold Learning Using Linear Local Tangent Space Alignment (LLTSA) Algorithm for Noise Removal in Wavelet Filtered Vibration Signal
    Anil Kumar
    Rajesh Kumar
    Journal of Nondestructive Evaluation, 2016, 35
  • [7] Manifold Learning Using Linear Local Tangent Space Alignment (LLTSA) Algorithm for Noise Removal in Wavelet Filtered Vibration Signal
    Kumar, Anil
    Kumar, Rajesh
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2016, 35 (03)
  • [8] Free-breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model
    Lee, Wonil
    Han, Paul Kyu
    Marin, Thibault
    Mounime, Ismael B. G.
    Eslahi, Samira Vafay
    Djebra, Yanis
    Chi, Didi
    Bijari, Felicitas J.
    Normandin, Marc D.
    El Fakhri, Georges
    Ma, Chao
    MAGNETIC RESONANCE IN MEDICINE, 2025, 93 (02) : 536 - 549
  • [9] Manifold Constrained Low-Rank and Joint Sparse Learning for Dynamic Cardiac MRI
    Meng, Qingmin
    Xiu, Xianchao
    Li, Yan
    IEEE ACCESS, 2020, 8 : 142622 - 142631
  • [10] Weighted Linear Local Tangent Space Alignment via Geometrically Inspired Weighted PCA for Fault Detection
    Shah, Muhammad Zohaib Hassan
    Ahmed, Zahoor
    Hu Lisheng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (01) : 210 - 219