ON AFFINE ITERATED FUNCTION SYSTEMS WHICH ROBUSTLY ADMIT AN INVARIANT AFFINE SUBSPACE

被引:0
作者
Morris, Ian D. [1 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
关键词
HAUSDORFF DIMENSION; PRESSURE; SETS;
D O I
10.1090/proc/16059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we give a simple sufficient condition for an affine iterated function system to admit an invariant affine subspace persistently with respect to changes in the translation parameters. This yields further examples of tuples of contracting linear maps which do not satisfy the conclusions of Falconer's theorem on the Hausdorff dimension of almost every self-affine set. We also obtain new examples of iterated function systems of similarity transformations which cannot satisfy the open set condition for any choice of translation parameters, and resolve a related question of Peres and Solomyak.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 17 条
[1]   Hausdorff dimension of planar self-affine sets and measures [J].
Barany, Balazs ;
Hochman, Michael ;
Rapaport, Ariel .
INVENTIONES MATHEMATICAE, 2019, 216 (03) :601-659
[2]   Equilibrium states of generalised singular value potentials and applications to affine iterated function systems [J].
Bochi, Jairo ;
Morris, Ian D. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2018, 28 (04) :995-1028
[3]  
Edgar G A., 1992, Rend. Circ. Mat. Palermo, P341
[4]   THE HAUSDORFF DIMENSION OF SELF-AFFINE FRACTALS [J].
FALCONER, KJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :339-350
[5]  
Feng D. J., 2019, PREPRINT
[6]   Non-conformal Repellers and the Continuity of Pressure for Matrix Cocycles [J].
Feng, De-Jun ;
Shmerkin, Pablo .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (04) :1101-1128
[7]  
Hochman M., 2020, MEM AM MATH SOC, V265
[8]   Hausdorff dimension of planar self-affine sets and measures with overlaps [J].
Hochman, Michael ;
Rapaport, Ariel .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (07) :2361-2441
[9]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[10]  
Jungers R., 2009, LECT NOTES CONTROL I, V385, DOI DOI 10.1007/978-3-540-95980-9