Efficient Hybrid Capacitive Deionization Device with High Operating Voltage Based on Layered Sodium Manganese Oxide

被引:2
作者
Liu, Dongsheng [1 ]
Xie, Xiufang [1 ]
Liu, Yongqi [1 ]
Pang, Zhihui [1 ]
Li, Xueying [1 ]
Chen, Lizhuang [1 ]
Dan, Yuanyuan [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Zhenjiang 212003, Peoples R China
来源
ACS ES&T WATER | 2023年 / 4卷 / 01期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
capacitive deionization; sodium-manganese oxides; high operating voltage; DESALINATION PERFORMANCE; ION REMOVAL; WATER; ELECTRODE; COMPOSITE; NA4MN9O18; STORAGE; POWER;
D O I
10.1021/acsestwater.3c00668
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study aims to synthesize sodium manganese oxide through a single-step hydrothermal method, enabling precise temperature control for manipulating the structure, composition, morphology, and sodium storage performance of the products. The synthesized Na0.55Mn2O4<middle dot>1.5H(2)O demonstrated a stable two-dimensional nanosheet structure and a significantly large specific surface area when prepared at a temperature of 180 degrees C. Under constant current charge-discharge conditions in a neutral solution, the material exhibited a specific capacitance of 184.3 F/g. By utilizing Na0.55Mn2O4<middle dot>1.5H(2)O as the positive electrode and self-made pine bark biomass-activated carbon as the negative electrode in a Na0.55Mn2O4<middle dot>1.5H(2)O|PBC-3 hybrid capacitor (HC), an optimized positive-to-negative electrode mass ratio of 1:3 resulted in the best overall performance. Notably, the system operated at a high voltage (1.5 V) without the requirement for ion-selective membranes. In a 1000 ppm NaCl solution, the system displayed an impressive desalination capacity of 44.8 mg/g and a desalination rate of 0.064 mg/g/s. At a higher removal rate of 0.095 mg/g/s, the system achieved a desalination capacity of 32.53 mg/g. Comparative analysis of comparable hybrid capacitive deionization devices revealed that the Na0.55Mn2O4<middle dot>1.5H(2)O|PBC-3 HC displayed a high operating voltage and superior desalination performance. Moreover, these findings enhance the feasibility of using HCDI technology in large-scale water treatment systems.
引用
收藏
页码:287 / 298
页数:12
相关论文
共 54 条
[1]   Progress in energy recovery and graphene usage in capacitive deionization [J].
Al Radi, Muaz ;
Sayed, Enas Taha ;
Alawadhi, Hussain ;
Abdelkareem, Mohammad Ali .
CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2021, 52 (17) :3080-3136
[2]   Application of Capacitive Deionization in Water Treatment and Energy Recovery: A Review [J].
Bao, Shenxu ;
Xin, Chunfu ;
Zhang, Yimin ;
Chen, Bo ;
Ding, Wei ;
Luo, Yongpeng .
ENERGIES, 2023, 16 (03)
[3]   Properties of amorphous iron phosphate in pseudocapacitive sodium ion removal for water desalination [J].
Bentalib, Abdulaziz ;
Pan, Yanbo ;
Yao, Libo ;
Peng, Zhenmeng .
RSC ADVANCES, 2020, 10 (29) :16875-16880
[4]   Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors [J].
Brezesinski, Torsten ;
Wang, John ;
Polleux, Julien ;
Dunn, Bruce ;
Tolbert, Sarah H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) :1802-1809
[5]   Enhanced hybrid capacitive deionization performance by the mass balance of electrodes [J].
Bu, Xudong ;
Zhang, Yurong ;
Guo, Haiqing ;
Wang, Sheng ;
Du, Xueyan .
DESALINATION, 2023, 567
[6]   Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization [J].
Byles, Bryan W. ;
Cullen, David A. ;
More, Karren L. ;
Pomerantseva, Ekaterina .
NANO ENERGY, 2018, 44 :476-488
[7]   Tunnel-Type Sodium Manganese Oxide Cathodes for Sodium-Ion Batteries [J].
Chae, Munseok S. ;
Elias, Yuval ;
Aurbach, Doron .
CHEMELECTROCHEM, 2021, 8 (05) :798-811
[8]   Dual-ions electrochemical deionization: a desalination generator [J].
Chen, Fuming ;
Huang, Yinxi ;
Guo, Lu ;
Sun, Linfeng ;
Wang, Ye ;
Yang, Hui Ying .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (10) :2081-2089
[9]   A dual-ion electrochemistry deionization system based on AgCl-Na0.44MnO2 electrodes [J].
Chen, Fuming ;
Huang, Yinxi ;
Guo, Lu ;
Ding, Meng ;
Yang, Hui Ying .
NANOSCALE, 2017, 9 (28) :10101-10108
[10]   The role and utilization of pseudocapacitance for energy storage by supercapacitors [J].
Conway, BE ;
Birss, V ;
Wojtowicz, J .
JOURNAL OF POWER SOURCES, 1997, 66 (1-2) :1-14