Unveiling complexity: Exploring chaos and solitons in modified nonlinear Schrödinger equation

被引:5
作者
Wang, Pengfei [1 ]
Yin, Feng [1 ]
Rahman, Mati ur [2 ,3 ]
Khan, Meraj Ali [4 ]
Baleanu, Dumitru [3 ]
机构
[1] Xinzhou Normal Univ, Math Dept, Xinzhou 034000, Shanxi, Peoples R China
[2] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[4] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Angola
关键词
Schrodinger equation; Galilean transformation; Bifurcation;
D O I
10.1016/j.rinp.2023.107268
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study delves deep into the complexities of the modified nonlinear Schrodinger equation. Through the Galilean transformation, we derive a dynamic system linked to the equation. Using planar dynamical systems theory, we investigate bifurcation phenomena and introduce perturbations to reveal chaotic behaviors. Phase portraits offer visual insights, while sensitivity analysis using the Runge-Kutta method emphasizes solution stability against initial condition variations. Leveraging the planar dynamical system method, we generate diverse solitons, including periodic, bright, and dark solitons. This work enhances our grasp of intricate dynamics and their broader implications.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] OPTICAL SOLITONS FOR NONLINEAR SCHRÖDINGER EQUATION FORMATTED IN THE ABSENCE OF CHROMATIC DISPERSION THROUGH MODIFIED EXPONENTIAL RATIONAL FUNCTION METHOD AND OTHER DISTINCT SCHEMES
    Wazwaz, Abdul-Majid
    Alhejaili, Weaam
    El-Tantawy, S. A.
    UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2024, 25 (05) : S1049 - S1059
  • [32] Superposition solitons for the mixed 4-coupled nonlinear Schrödinger equations
    Zhang, LingLing
    Ye, XueWei
    PHYSICA SCRIPTA, 2024, 99 (06)
  • [33] Periodic solitons of generalized coupled nonlinear Schrödinger equations with variable coefficients
    Yang, W.
    Cheng, X. P.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (04)
  • [34] Further innovative optical solitons of fractional nonlinear quadratic-cubic Schrödinger equation via two techniques
    Md. Tarikul Islam
    Mst. Armina Aktar
    J. F. Gómez-Aguilar
    J. Torres-Jiménez
    Optical and Quantum Electronics, 2021, 53
  • [35] Soliton, breather and rational solutions of a high-order modified derivative nonlinear Schrödinger equation
    Sun, Hong-Qian
    Huang, Jun-Hua
    Ma, Li-Yuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (03):
  • [36] Abundant solitons for highly dispersive nonlinear Schrödinger equation with sextic-power law refractive index using modified extended direct algebraic method
    Rabie, Wafaa B.
    Hussein, Hisham H.
    Ahmed, Hamdy M.
    Alnahhass, Mahmoud
    Alexan, Wassim
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 86 : 680 - 689
  • [37] Complex behavior and soliton solutions of the Resonance Nonlinear Schrödinger equation with modified extended tanh expansion method and Galilean transformation
    Li, Wuming
    Hu, Jing
    Ur Rahman, Mati
    Ul Haq, Noor
    RESULTS IN PHYSICS, 2024, 56
  • [38] Higher Order Nonlinear Schrödinger Equation in Domains With Moving Boundaries
    Nina-Mollisaca, Raul
    Sepulveda-Cortes, Mauricio
    Vejar-Asem, Rodrigo
    Vera-Villagran, Octavio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [39] Numerical inverse scattering transform for the derivative nonlinear Schrödinger equation
    Cui, Shikun
    Wang, Zhen
    NONLINEARITY, 2024, 37 (10)
  • [40] The cubic nonlinear fractional Schrödinger equation on the half-line
    Cavalcante, Marcio
    Huaroto, Gerardo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 244