Homogenization of Monotone Parabolic Problems with an Arbitrary Number of Spatial and Temporal Scales

被引:0
|
作者
Danielsson, Tatiana [1 ]
Floden, Liselott [1 ]
Johnsen, Pernilla [1 ]
Lindberg, Marianne Olsson [1 ]
机构
[1] Mid Sweden Univ, Dept Engn Math & Sci Educ, Kunskapens Vag 8, S-83125 Ostersund, Sweden
关键词
homogenization; parabolic; monotone; two-scale convergence; multiscale convergence; very weak multiscale convergence; PERIODIC HOMOGENIZATION; SIGMA-CONVERGENCE; OPERATORS;
D O I
10.21136/AM.2023.0269-22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of the scale parameter epsilon. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [1] Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales
    Tatiana Danielsson
    Liselott Flodén
    Pernilla Johnsen
    Marianne Olsson Lindberg
    Applications of Mathematics, 2024, 69 : 1 - 24
  • [2] Homogenization of monotone parabolic problems with several temporal scales
    Persson, Jens
    APPLICATIONS OF MATHEMATICS, 2012, 57 (03) : 191 - 214
  • [3] Homogenization of monotone parabolic problems with several temporal scales
    Jens Persson
    Applications of Mathematics, 2012, 57 : 191 - 214
  • [4] Homogenization of Parabolic Equations with an Arbitrary Number of Scales in Both Space and Time
    Floden, Liselott
    Holmbom, Anders
    Lindberg, Marianne Olsson
    Persson, Jens
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [5] Reiterated homogenization of parabolic systems with several spatial and temporal scales
    Niu, Weisheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (09)
  • [6] Reiterated homogenization of monotone parabolic problems
    Flodén L.
    Holmbom A.
    Olsson M.
    Svanstedt N.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2007, 53 (2) : 217 - 232
  • [7] Numerical Homogenization Methods for Parabolic Monotone Problems
    Abdulle, Assyr
    BUILDING BRIDGES: CONNECTIONS AND CHALLENGES IN MODERN APPROACHES TO NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, 2016, 114 : 1 - 38
  • [8] A Strange Term in the Homogenization of Parabolic Equations with Two Spatial and Two Temporal Scales
    Floden, L.
    Holmbom, A.
    Lindberg, M. Olsson
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [9] HOMOGENIZATION OF LINEAR PARABOLIC EQUATIONS WITH THREE SPATIAL AND THREE TEMPORAL SCALES FOR CERTAIN MATCHINGS BETWEEN THE MICROSCOPIC SCALES
    Danielsson, Tatiana
    Johnsen, Pernilla
    MATHEMATICA BOHEMICA, 2021, 146 (04): : 483 - 511
  • [10] A Note on Parabolic Homogenization with a Mismatch between the Spatial Scales
    Floden, Liselott
    Holmbom, Anders
    Lindberg, Marianne Olsson
    Persson, Jens
    ABSTRACT AND APPLIED ANALYSIS, 2013,