Detecting new fundamental fields with pulsar timing arrays

被引:15
作者
Zhang, Chao [1 ]
Dai, Ning [2 ]
Gao, Qing [3 ]
Gong, Yungui [2 ,4 ]
Jiang, Tong [2 ]
Lu, Xuchen [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China
[3] Southwest Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China
[4] Ningbo Univ, Sch Phys Sci & Technol, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
BLACK-HOLE BINARIES; GRAVITATIONAL-WAVE; RADIATION;
D O I
10.1103/PhysRevD.108.104069
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Strong evidence of the existence of the stochastic gravitational wave background (SGWB) has been reported recently by the North American Nanohertz Observatory for Gravitational Waves, the Parkes Pulsar Timing Array, the European Pulsar Timing Array, and the Chinese Pulsar Timing Array Collaborations. The Bayesian posteriors of the SGWB amplitude and spectrum are compatible with astrophysical predictions for the SGWB from a population of supermassive black hole binaries (SMBHBs). We discuss the modifications arising from the extra scalar or vector radiation to the characteristic dimensionless strain of gravitational waves from SMBHBs and explore the possibility of detecting charges carried by supermassive black holes in modified gravity. The Bayesian posteriors on the tensor amplitude and the spectral exponent of SGWB are log10 AT = -14.64 thorn 0.19 -0.27 and alpha = -0.35 thorn 0.23 -0.25 , anda rough upper limit log10 AV;S <= -15.2 is obtained for the SGWB scalar or vector amplitude. The Bayesian factor between the models with and without charge is only 0.6, so the current PTA data do not favor charged SMBHBs over neutral SMBHBs.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Searching for bispectrum of stochastic gravitational waves with pulsar timing arrays [J].
Tsuneto, Makoto ;
Ito, Asuka ;
Noumi, Toshifumi ;
Soda, Jiro .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (03)
[22]   Summary of session C1: pulsar timing arrays [J].
Shannon, R. M. ;
Chamberlin, S. ;
Cornish, N. J. ;
Ellis, J. A. ;
Mingarelli, C. M. F. ;
Perrodin, D. ;
Rosado, P. ;
Sesana, A. ;
Taylor, S. R. ;
Wen, L. ;
Bassa, C. G. ;
Gair, J. ;
Janssen, G. H. ;
Karuppusamy, R. ;
Kramer, M. ;
Lee, K. J. ;
Liu, K. ;
Mandel, I. ;
Purver, M. ;
Sidery, T. ;
Smits, R. ;
Stappers, B. W. ;
Vecchio, A. .
GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (08) :1-11
[23]   Implications of cosmologically coupled black holes for pulsar timing arrays [J].
Calza, Marco ;
Gianesello, Francesco ;
Rinaldi, Massimiliano ;
Vagnozzi, Sunny .
SCIENTIFIC REPORTS, 2024, 14 (01)
[24]   Charting the nanohertz gravitational wave sky with pulsar timing arrays [J].
Bernardo, Reginald Christian ;
Ng, Kin-Wang .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2025, 34 (04)
[25]   Signals of merging supermassive black holes in pulsar timing arrays [J].
Depta, Paul Frederik ;
Schmidt-Hoberg, Kai ;
Schwaller, Pedro ;
Tasillo, Carlo .
PHYSICAL REVIEW RESEARCH, 2025, 7 (01)
[26]   The gravitational-wave discovery space of pulsar timing arrays [J].
Cutler, Curt ;
Burke-Spolaor, Sarah ;
Vallisneri, Michele ;
Lazio, Joseph ;
Majid, Walid .
PHYSICAL REVIEW D, 2014, 89 (04)
[27]   Mapping gravitational-wave backgrounds of arbitrary polarisation using pulsar timing arrays [J].
Gair, Jonathan R. ;
Romano, Joseph D. ;
Taylor, Stephen R. .
PHYSICAL REVIEW D, 2015, 92 (10)
[28]   Efficient gravitational wave searches with pulsar timing arrays using Hamiltonian Monte Carlo [J].
Freedman, Gabriel E. ;
Johnson, Aaron D. ;
van Haasteren, Rutger ;
Vigeland, Sarah J. .
PHYSICAL REVIEW D, 2023, 107 (04)
[29]   Detecting relic gravitational waves by pulsar timing arrays: Effects of cosmic phase transitions and relativistic free-streaming gases [J].
Liu, Xiao-Jin ;
Zhao, Wen ;
Zhang, Yang ;
Zhu, Zong-Hong .
PHYSICAL REVIEW D, 2016, 93 (02)
[30]   Effect of small interpulsar distances in stochastic gravitational wave background searches with pulsar timing arrays [J].
Mingarelli, Chiara M. F. ;
Sidery, Trevor .
PHYSICAL REVIEW D, 2014, 90 (06)