Tumor Microenvironment-Responsive Nanoparticles Amplifying STING Signaling Pathway for Cancer Immunotherapy

被引:52
|
作者
Liu, Dan [1 ,2 ]
Liang, Shuang [1 ,2 ]
Ma, Kongshuo [1 ,2 ]
Meng, Qian-Fang [3 ]
Li, Xingang [4 ]
Wei, Jian [5 ]
Zhou, Mengli [1 ,2 ]
Yun, Kaiqing [1 ,2 ]
Pan, Yuanwei [3 ,6 ]
Rao, Lang [3 ]
Chen, Xiaoyuan [6 ,7 ,8 ,9 ,10 ]
Wang, Zhaohui [1 ,2 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, State Key Lab Bioact Subst & Funct Nat Med, Inst Mat Med, Beijing 100050, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Inst Mat Med, Beijing Key Lab Drug Delivery Technol & Novel Form, Beijing 100050, Peoples R China
[3] Inst Biomed Hlth Technol & Engn, Shenzhen Bay Lab, Shenzhen 518132, Peoples R China
[4] Capital Med Univ, Beijing Friendship Hosp, Dept Pharm, Beijing 100050, Peoples R China
[5] Capital Med Univ, Beijing Friendship Hosp, Dept Intervent Radiog, Beijing 10050, Peoples R China
[6] Natl Univ Singapore, Yong Loo Lin Sch Med, Nanomed Translat Res Program, Dept Diagnost Radiol, Singapore 119074, Singapore
[7] Natl Univ Singapore, Coll Design & Engn, Dept Chem & Biomol Engn, Singapore 119074, Singapore
[8] Natl Univ Singapore, Coll Design & Engn, Dept Biomed Engn, Singapore 119074, Singapore
[9] Natl Univ Singapore, Clin Imaging Res Ctr, Ctr Translat Med, Yong Loo Lin Sch Med, Singapore 117599, Singapore
[10] ASTAR, Inst Mol & Cell Biol, 61 Biopolis Dr, Singapore 138673, Singapore
基金
新加坡国家研究基金会; 英国医学研究理事会; 中国国家自然科学基金;
关键词
cancer immunotherapy; nanoparticles; STING pathway; TLR4; pathway; tumor microenvironment; IFN-GAMMA; CELLS; IMMUNITY; INNATE; DNA; RADIATION; DELIVERY; AGONISTS;
D O I
10.1002/adma.202304845
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Insufficient activation of the stimulator of interferon genes (STING) signaling pathway and profoundly immunosuppressive microenvironment largely limits the effect of cancer immunotherapy. Herein, tumor microenvironment (TME)-responsive nanoparticles (PMM NPs) are exploited that simultaneously harness STING and Toll-like receptor 4 (TLR4) to augment STING activation via TLR4-mediated nuclear factor-kappa B signaling pathway stimulation, leading to the increased secretion of type I interferons (i.e., 4.0-fold enhancement of IFN-beta) and pro-inflammatory cytokines to promote a specific T cell immune response. Moreover, PMM NPs relieve the immunosuppression of the TME by decreasing the percentage of regulatory T cells, and polarizing M2 macrophages to the M1 type, thus creating an immune-supportive TME to unleash a cascade adaptive immune response. Combined with an anti-PD-1 antibody, synergistic efficacy is achieved in both inflamed colorectal cancer and noninflamed metastatic breast tumor models. Moreover, rechallenging tumor-free animals with homotypic cells induced complete tumor rejection, indicating the generation of systemic antitumor memory. These TME-responsive nanoparticles may open a new avenue to achieve the spatiotemporal orchestration of STING activation, providing a promising clinical candidate for next-generation cancer immunotherapy. Tumor microenvironment-responsive nanoparticles are constructed to achieve spatiotemporal orchestration of innate immune stimulation by harnessing STING and TLR4 pathways. MPLA-mediated activation of nuclear factor kappa B amplifies STING signaling to promote the secretion of IFN-beta and other inflammatory cytokines, relieving the immunosuppression of tumor microenvironment and thus effectively inhibiting primary tumor growth as well as tumor recurrence and metastasis.image
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Multifunctional hybrid exosomes enhanced cancer chemo-immunotherapy by activating the STING pathway
    Cheng, Lili
    Zhang, Peng
    Liu, Yadong
    Liu, Zhuoyin
    Tang, Junjie
    Xu, Langtao
    Liu, Jie
    BIOMATERIALS, 2023, 301
  • [42] Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment
    Yang, Yu
    Wu, Hao
    Liu, Bo
    Liu, Zhuang
    ADVANCED DRUG DELIVERY REVIEWS, 2021, 179
  • [43] Inhibitory Microenvironment Remodeling Enhances STING Activation for Solid Tumor Immunotherapy
    Fang, Wenming
    Chen, Lizhu
    Hu, Ping
    Shi, Jianlin
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [44] Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cGAS-STING pathway strategies
    Huang, Mingqing
    Cha, Zhuocen
    Liu, Rui
    Lin, Mengping
    Gafoor, Naif Abdul
    Kong, Tong
    Ge, Fei
    Chen, Wenlin
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [45] Tumor microenvironment-responsive prodrug nanoplatform via co-self-assembly of photothermal agent and IDO inhibitor for enhanced tumor penetration and cancer immunotherapy
    Liu, Yijia
    Lu, Yan
    Zhu, Xianghui
    Li, Chao
    Yan, Mengmeng
    Pan, Jie
    Ma, Guilei
    BIOMATERIALS, 2020, 242
  • [46] Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy
    Liang, Shuang
    Yao, Jianjun
    Liu, Dan
    Zhou, Mengli
    Cui, Yong
    Wang, Zhaohui
    CHINESE CHEMICAL LETTERS, 2025, 36 (03)
  • [47] Tumor Microenvironment-Responsive Theranostic Nanoplatform for Guided Molecular Dynamic/Photodynamic Synergistic Therapy
    Zhang, Dong-Yang
    Huang, Fanglin
    Ma, Yan
    Liang, Guangzhong
    Peng, Zhuo
    Guan, Shixia
    Zhai, Junqiu
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (15) : 17392 - 17403
  • [48] Tumor microenvironment-responsive DNA-based nanomedicine triggers innate sensing for enhanced immunotherapy
    Li, Jinyang
    Han, Xiaoyu
    Gao, Shanshan
    Yan, Yumeng
    Li, Xiaoguang
    Wang, Hui
    JOURNAL OF NANOBIOTECHNOLOGY, 2023, 21 (01)
  • [49] Biofilm microenvironment-responsive nanoparticles for the treatment of bacterial infection
    Hu, Yanling
    Ruan, Xiaohong
    Lv, Xinyi
    Xu, Yan
    Wang, Wenjun
    Cai, Yu
    Ding, Meng
    Dong, Heng
    Shao, Jinjun
    Yang, Dongliang
    Dong, Xiaochen
    NANO TODAY, 2022, 46
  • [50] Bidirectional regulation of the cGAS-STING pathway in the immunosuppressive tumor microenvironment and its association with immunotherapy
    Zhang, Yurui
    Wang, Yudi
    Mu, Peizheng
    Zhu, Xiao
    Dong, Yucui
    FRONTIERS IN IMMUNOLOGY, 2024, 15