Neural Operator-Based Surrogate Solver for Free-Form Electromagnetic Inverse Design

被引:25
作者
Augenstein, Yannick [1 ]
Repan, Taavi [3 ]
Rockstuhl, Carsten [1 ,2 ]
机构
[1] Karlsruhe Inst Technol, Inst Theoret Solid State Phys, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[3] Univ Tartu, Inst Phys, EE-50411 Tartu, Estonia
关键词
machine learning; neural operators; inverse design; nanophotonics; ALGORITHM; NETWORKS;
D O I
10.1021/acsphotonics.3c00156
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Neural operators have emerged as a powerful tool for solving partial differential equations in the context of scientific machine learning. Here, we implement and train a modified Fourier neural operator as a surrogate solver for electromagnetic scattering problems and compare its data efficiency to existing methods. We further demonstrate its application to the gradient-based nanophotonic inverse design of free-form, fully three-dimensional electromagnetic scatterers, an area that has so far eluded the application of deep-learning techniques.
引用
收藏
页码:1547 / 1557
页数:11
相关论文
共 69 条
[61]   Learning the solution operator of parametric partial differential equations with physics-informed DeepONets [J].
Wang, Sifan ;
Wang, Hanwen ;
Perdikaris, Paris .
SCIENCE ADVANCES, 2021, 7 (40)
[62]   Inverse design of nanophotonics devices and materials [J].
Wiecha, Peter R. ;
Petrovb, Alexander Yu. ;
Genevet, Patrice ;
Bogdanov, Andrey .
PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2022, 52
[63]   Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures [J].
Wiecha, Peter R. ;
Muskens, Otto L. .
NANO LETTERS, 2020, 20 (01) :329-338
[64]   Comment: The FAIR Guiding Principles for scientific data management and stewardship [J].
Wilkinson, Mark D. ;
Dumontier, Michel ;
Aalbersberg, IJsbrand Jan ;
Appleton, Gabrielle ;
Axton, Myles ;
Baak, Arie ;
Blomberg, Niklas ;
Boiten, Jan-Willem ;
Santos, Luiz Bonino da Silva ;
Bourne, Philip E. ;
Bouwman, Jildau ;
Brookes, Anthony J. ;
Clark, Tim ;
Crosas, Merce ;
Dillo, Ingrid ;
Dumon, Olivier ;
Edmunds, Scott ;
Evelo, Chris T. ;
Finkers, Richard ;
Gonzalez-Beltran, Alejandra ;
Gray, Alasdair J. G. ;
Groth, Paul ;
Goble, Carole ;
Grethe, Jeffrey S. ;
Heringa, Jaap ;
't Hoen, Peter A. C. ;
Hooft, Rob ;
Kuhn, Tobias ;
Kok, Ruben ;
Kok, Joost ;
Lusher, Scott J. ;
Martone, Maryann E. ;
Mons, Albert ;
Packer, Abel L. ;
Persson, Bengt ;
Rocca-Serra, Philippe ;
Roos, Marco ;
van Schaik, Rene ;
Sansone, Susanna-Assunta ;
Schultes, Erik ;
Sengstag, Thierry ;
Slater, Ted ;
Strawn, George ;
Swertz, Morris A. ;
Thompson, Mark ;
van der Lei, Johan ;
van Mulligen, Erik ;
Velterop, Jan ;
Waagmeester, Andra ;
Wittenburg, Peter .
SCIENTIFIC DATA, 2016, 3
[65]   On the use of artificial neural networks in topology optimisation [J].
Woldseth, Rebekka V. ;
Aage, Niels ;
Baerentzen, J. Andreas ;
Sigmund, Ole .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (10)
[66]   Trace formulation for photonic inverse design with incoherent sources [J].
Yao, Wenjie ;
Verdugo, Francesc ;
Christiansen, Rasmus E. ;
Johnson, Steven G. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (11)
[67]  
Zeiler MD, 2010, PROC CVPR IEEE, P2528, DOI 10.1109/CVPR.2010.5539957
[68]   A compact 2-D full-wave finite-difference frequency-domain method for general guided wave structures [J].
Zhao, YJ ;
Wu, KL ;
Cheng, KKM .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2002, 50 (07) :1844-1848
[69]   Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization [J].
Zhu, CY ;
Byrd, RH ;
Lu, PH ;
Nocedal, J .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1997, 23 (04) :550-560