Neural Operator-Based Surrogate Solver for Free-Form Electromagnetic Inverse Design

被引:24
作者
Augenstein, Yannick [1 ]
Repan, Taavi [3 ]
Rockstuhl, Carsten [1 ,2 ]
机构
[1] Karlsruhe Inst Technol, Inst Theoret Solid State Phys, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[3] Univ Tartu, Inst Phys, EE-50411 Tartu, Estonia
关键词
machine learning; neural operators; inverse design; nanophotonics; ALGORITHM; NETWORKS;
D O I
10.1021/acsphotonics.3c00156
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Neural operators have emerged as a powerful tool for solving partial differential equations in the context of scientific machine learning. Here, we implement and train a modified Fourier neural operator as a surrogate solver for electromagnetic scattering problems and compare its data efficiency to existing methods. We further demonstrate its application to the gradient-based nanophotonic inverse design of free-form, fully three-dimensional electromagnetic scatterers, an area that has so far eluded the application of deep-learning techniques.
引用
收藏
页码:1547 / 1557
页数:11
相关论文
共 69 条
[1]  
Allen Micah, 2019, Wellcome Open Res, V4, P63, DOI 10.12688/wellcomeopenres.15191.2
[2]   A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design [J].
An, Sensong ;
Fowler, Clayton ;
Zheng, Bowen ;
Shalaginov, Mikhail Y. ;
Tang, Hong ;
Li, Hang ;
Zhou, Li ;
Ding, Jun ;
Agarwal, Anuradha Murthy ;
Rivero-Baleine, Clara ;
Richardson, Kathleen A. ;
Gu, Tian ;
Hu, Juejun ;
Zhang, Hualiang .
ACS PHOTONICS, 2019, 6 (12) :3196-3207
[3]   Inverse Design of Nanophotonic Devices with Structural Integrity [J].
Augenstein, Yannick ;
Rockstuhl, Carsten .
ACS PHOTONICS, 2020, 7 (08) :2190-2196
[4]  
Baxter J., 2021, OSA TECHNICAL DIGEST, DOI [10.1364/FLATOPTICS.2021.JW2D.4, DOI 10.1364/FLATOPTICS.2021.JW2D.4]
[5]   Efficient simulation of biperiodic, layered structures based on the T-matrix method [J].
Beutel, Dominik ;
Groner, Achim ;
Rockstuhl, Carsten ;
Fernandez-Corbaton, Ivan .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2021, 38 (06) :1782-1791
[6]   DeepM&Mnet: Inferring the electroconvection multiphysics fields based on operator approximation by neural networks [J].
Cai, Shengze ;
Wang, Zhicheng ;
Lu, Lu ;
Zaki, Tamer A. ;
Karniadakis, George Em .
JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 436
[7]   High Speed Simulation and Freeform Optimization of Nanophotonic Devices with Physics-Augmented Deep Learning [J].
Chen, Mingkun ;
Lupoiu, Robert ;
Mao, Chenkai ;
Huang, Der-Han ;
Jiang, Jiaqi ;
Lalanne, Philippe ;
Fan, Jonathan A. .
ACS PHOTONICS, 2022, :3110-3123
[8]   An improved data-free surrogate model for solving partial differential equations using deep neural networks [J].
Chen, Xinhai ;
Chen, Rongliang ;
Wan, Qian ;
Xu, Rui ;
Liu, Jie .
SCIENTIFIC REPORTS, 2021, 11 (01)
[9]   Scientific Machine Learning Through Physics-Informed Neural Networks: Where we are and What's Next [J].
Cuomo, Salvatore ;
Di Cola, Vincenzo Schiano ;
Giampaolo, Fabio ;
Rozza, Gianluigi ;
Raissi, Maziar ;
Piccialli, Francesco .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
[10]   Multiobjective Statistical Learning Optimization of RGB Metalens [J].
Elsawy, Mahmoud M. R. ;
Gourdin, Anthony ;
Binois, Mickael ;
Duvigneau, Regis ;
Felbacq, Didier ;
Khadir, Samira ;
Genevet, Patrice ;
Lanteri, Stephane .
ACS PHOTONICS, 2021, 8 (08) :2498-2508