Sobolev spaces and Poincare inequalities on the Vicsek fractal

被引:8
作者
Baudoin, Fabrice [1 ]
Chen, Li [2 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
来源
ANNALES FENNICI MATHEMATICI | 2023年 / 48卷 / 01期
关键词
Vicsek set; Sobolev spaces; Poincar? inequalities; p-energies; real interpolation; TRIEBEL-LIZORKIN SPACES; P-ENERGY; BESOV;
D O I
10.54330/afm.122168
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that several natural approaches to Sobolev spaces coincide on the Vicsek fractal. More precisely, we show that the metric approach of Korevaar-Schoen, the approach by limit of discrete p-energies and the approach by limit of Sobolev spaces on cable systems all yield the same functional space with equivalent norms for p > 1. As a consequence we prove that the Sobolev spaces form a real interpolation scale. We also obtain LP-Poincare inequalities for all values of p >= 1.
引用
收藏
页码:3 / 26
页数:24
相关论文
共 27 条
[1]   Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates [J].
Alonso-Ruiz, Patricia ;
Baudoin, Fabrice ;
Chen, Li ;
Rogers, Luke ;
Shanmugalingam, Nageswari ;
Teplyaev, Alexander .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)
[2]  
[Anonymous], 2010, Adv. Lect. Math. (ALM)
[3]  
Baudoin F, 2021, Arxiv, DOI arXiv:2012.03090
[4]   DIFFERENTIAL ONE-FORMS ON DIRICHLET SPACES AND BAKRY-EMERY ESTIMATES ON METRIC GRAPHS [J].
Baudoin, Fabrice ;
Kelleher, Daniel J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (05) :3145-3178
[5]  
Bennett C., 1988, Interpolation of Operators
[6]  
CAO S., 2022, Adv. Math., V405
[7]   A note on Sobolev type inequalities on graphs with polynomial volume growth [J].
Chen, Li .
ARCHIV DER MATHEMATIK, 2019, 113 (03) :313-323
[8]   ANALYSIS OF THE LAPLACIAN AND SPECTRAL OPERATORS ON THE VICSEK SET [J].
Constantin, Sarah ;
Strichartz, Robert S. ;
Wheeler, Miles .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) :1-44
[9]   Interpolation properties of Besov spaces defined on metric spaces [J].
Gogatishvili, Amiran ;
Koskela, Pekka ;
Shanmugalingam, Nageswari .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (02) :215-231
[10]   Heat kernel and Lipschitz-Besov spaces [J].
Grigor'yan, Alexander ;
Liu, Liguang .
FORUM MATHEMATICUM, 2015, 27 (06) :3567-3613