Multiple solutions for ageneralized Chern-Simons equation on graphs

被引:13
作者
Chao, Ruixue [1 ]
Hou, Songbo [1 ]
机构
[1] China Agr Univ, Coll Sci, Dept Appl Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Chern-Simons equation; Finite graph; Upper and lower solution; Mountain pass theorem; KAZDAN-WARNER EQUATION; LI-YAU INEQUALITY; HEAT-EQUATION; BLOW-UP; EXISTENCE; VORTICES;
D O I
10.1016/j.jmaa.2022.126787
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a generalized Chern-Simons equation Delta u = lambda e(u) (e(u) - 1)(5) + 4 pi Sigma(N)(j=1)delta(pj) on a connected finite graph G = (V, E), where lambda denotes a positive constant; N denotes a positive integer; p(1), p(2), center dot center dot center dot, p(N) denote distinct vertices of V; delta(pj) denotes the Dirac delta mass at p(j). Using the upper-lower solution method and prior estimates, we prove that there exists a critical value lambda(c) such that the generalized Chern-Simons equation admits a solution if lambda >= lambda(c). Then applying the mountain pass theorem due to Ambrosetti-Rabinowitz, we establish that the equation has at least two solutions if lambda > lambda(c). (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 29 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
Bauer F, 2015, J DIFFER GEOM, V99, P359
[3]   Generalized self-dual Chern-Simons vortices [J].
Bazeia, D. ;
da Hora, E. ;
dos Santos, C. ;
Menezes, R. .
PHYSICAL REVIEW D, 2010, 81 (12)
[4]   VORTEX CONDENSATION IN THE CHERN-SIMONS HIGGS-MODEL - AN EXISTENCE THEOREM [J].
CAFFARELLI, LA ;
YANG, YS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :321-336
[5]   DYNAMICS OF VORTICES IN GINZBURG-LANDAU THEORIES WITH APPLICATIONS TO SUPERCONDUCTIVITY [J].
E, W .
PHYSICA D, 1994, 77 (04) :383-404
[6]   KAZDAN-WARNER EQUATION ON INFINITE GRAPHS [J].
Ge, Huabin ;
Jiang, Wenfeng .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (05) :1091-1101
[7]   Li-Yau inequality for unbounded Laplacian on graphs [J].
Gong, Chao ;
Lin, Yong ;
Liu, Shuang ;
Yau, Shing-Tung .
ADVANCES IN MATHEMATICS, 2019, 357
[8]   Existence of positive solutions to some nonlinear equations on locally finite graphs [J].
Grigor'yan, Alexander ;
Lin Yong ;
Yang YunYan .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (07) :1311-1324
[9]   Yamabe type equations on graphs [J].
Grigor'yan, Alexander ;
Lin, Yong ;
Yang, Yunyan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) :4924-4943
[10]   Kazdan-Warner equation on graph [J].
Grigor'yan, Alexander ;
Lin, Yong ;
Yang, Yunyan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)