Multiple solutions for ageneralized Chern-Simons equation on graphs

被引:10
作者
Chao, Ruixue [1 ]
Hou, Songbo [1 ]
机构
[1] China Agr Univ, Coll Sci, Dept Appl Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Chern-Simons equation; Finite graph; Upper and lower solution; Mountain pass theorem; KAZDAN-WARNER EQUATION; LI-YAU INEQUALITY; HEAT-EQUATION; BLOW-UP; EXISTENCE; VORTICES;
D O I
10.1016/j.jmaa.2022.126787
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a generalized Chern-Simons equation Delta u = lambda e(u) (e(u) - 1)(5) + 4 pi Sigma(N)(j=1)delta(pj) on a connected finite graph G = (V, E), where lambda denotes a positive constant; N denotes a positive integer; p(1), p(2), center dot center dot center dot, p(N) denote distinct vertices of V; delta(pj) denotes the Dirac delta mass at p(j). Using the upper-lower solution method and prior estimates, we prove that there exists a critical value lambda(c) such that the generalized Chern-Simons equation admits a solution if lambda >= lambda(c). Then applying the mountain pass theorem due to Ambrosetti-Rabinowitz, we establish that the equation has at least two solutions if lambda > lambda(c). (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 29 条
  • [1] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [2] Bauer F, 2015, J DIFFER GEOM, V99, P359
  • [3] Generalized self-dual Chern-Simons vortices
    Bazeia, D.
    da Hora, E.
    dos Santos, C.
    Menezes, R.
    [J]. PHYSICAL REVIEW D, 2010, 81 (12):
  • [4] VORTEX CONDENSATION IN THE CHERN-SIMONS HIGGS-MODEL - AN EXISTENCE THEOREM
    CAFFARELLI, LA
    YANG, YS
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) : 321 - 336
  • [5] DYNAMICS OF VORTICES IN GINZBURG-LANDAU THEORIES WITH APPLICATIONS TO SUPERCONDUCTIVITY
    E, W
    [J]. PHYSICA D, 1994, 77 (04): : 383 - 404
  • [6] KAZDAN-WARNER EQUATION ON INFINITE GRAPHS
    Ge, Huabin
    Jiang, Wenfeng
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (05) : 1091 - 1101
  • [7] Li-Yau inequality for unbounded Laplacian on graphs
    Gong, Chao
    Lin, Yong
    Liu, Shuang
    Yau, Shing-Tung
    [J]. ADVANCES IN MATHEMATICS, 2019, 357
  • [8] Existence of positive solutions to some nonlinear equations on locally finite graphs
    Grigor'yan, Alexander
    Lin Yong
    Yang YunYan
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (07) : 1311 - 1324
  • [9] Yamabe type equations on graphs
    Grigor'yan, Alexander
    Lin, Yong
    Yang, Yunyan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) : 4924 - 4943
  • [10] Kazdan-Warner equation on graph
    Grigor'yan, Alexander
    Lin, Yong
    Yang, Yunyan
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)