True active surface area as a key indicator of corrosion behavior in additively manufactured 316L stainless steel

被引:3
作者
Cho, Seongkoo [1 ]
Buchsbaum, Steven F. [1 ]
Biener, Monika [1 ]
Jones, Justin [1 ]
Melia, Michael A. [2 ]
Stull, Jamie A. [3 ]
Colon-Mercado, Hector R. [4 ]
Dwyer, Jonathan [5 ]
Qiu, S. Roger [1 ]
机构
[1] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA
[2] Sandia Natl Labs, 1515 Eubank Blvd SE, Albuquerque, NM 87123 USA
[3] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA
[4] Savannah River Natl Lab, 999-2W, Aiken, SC 29808 USA
[5] Kansas City Natl Secur Campus, 14520 Botts Rd, Kansas City, MO 64147 USA
关键词
True active surface; Additive manufacturing; 316L stainless steel; Surface roughness; Corrosion; PITTING CORROSION; ROUGHNESS; GENERATION; RESISTANCE;
D O I
10.1016/j.matdes.2023.112559
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (LPBF) additively manufactured (AM) 316L stainless steels (SS) possess much more complex surfaces than their wrought counterparts which affects the corrosion behavior. Surface roughness, a typical metric for assessing corrosion of conventionally manufactured metals, is often ineffective as an independent parameter in characterizing corrosion of the AM metals for their higher surface roughness ranging from 5 to 50 mu m. This study experimentally shows that the true active surface area (ATA) is a proper parameter for quick assessment of localized corrosion response of AM 316L SS. Through the potentiodynamic polarization testing on surrogates under full immersion in 0.6 M NaCl solution, the pitting corrosion susceptibility was evaluated. While no consistent correlation to surface roughness was displayed, the pitting breakdown potential (Ep) showed a clear statistical trend at 1/A0.5TA. In addition, normalization of the polarization resistance with the ATA reveals the corresponding surface roughness did not significantly affect the change in open-circuit corrosion phenomenon. This correlation fits well with a previously reported stochastic pitting model on metal surfaces. The results suggest that the importance of ATA as a predictor for predisposition to corrosion in AM 316L SS extends far beyond what has been established for wrought materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Microstructural features contributing to macroscopic corrosion: The role of oxide inclusions on the corrosion properties of additively manufactured 316L stainless steel
    Lodhi, M. J. K.
    Iams, A. D.
    Sikora, E.
    Palmer, T. A.
    CORROSION SCIENCE, 2022, 203
  • [32] On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting
    Laleh, Majid
    Hughes, Anthony E.
    Xu, Wei
    Haghdadi, Nima
    Wang, Ke
    Cizek, Pavel
    Gibson, Ian
    Tan, Mike Yongjun
    CORROSION SCIENCE, 2019, 161
  • [33] Influence of laser power on mechanical properties and pitting corrosion behavior of additively manufactured 316L stainless steel by laser powder bed fusion (L-PBF)
    Zhang, Ao
    Wu, Wangping
    Wu, Meng
    Liu, Yaxuan
    Zhang, Yi
    Wang, Qinqin
    OPTICS AND LASER TECHNOLOGY, 2024, 176
  • [34] Using shot peening and burnishing to improve fatigue performance of additively manufactured 316L stainless steel
    Sayadi, Daniyal
    Rangrizian, Hossein
    Khodabandeh, Alireza
    Nezarati, Masoud
    Hemasian Etefagh, Ardeshir
    Khajehzadeh, Mohsen
    Razfar, Mohammad Reza
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2024, 238 (04) : 707 - 722
  • [35] Additively Manufactured 316L Stainless Steel Subjected to a Duplex Peening-PVD Coating Treatment
    Bonnici, Luana
    Buhagiar, Joseph
    Cassar, Glenn
    Vella, Kelsey Ann
    Chen, Jian
    Zhang, Xiyu
    Huang, Zhiquan
    Zammit, Ann
    MATERIALS, 2023, 16 (02)
  • [36] High-throughput surface characterization to identify porosity defects in additively manufactured 316L stainless steel
    Agrawal, Ankur K.
    Thoma, Dan J.
    ADDITIVE MANUFACTURING LETTERS, 2022, 3
  • [37] Ballistic Performance of Additively Manufactured 316L Stainless Steel Spherical Fragments
    Xue H.
    Wang T.
    Huang G.
    Cui X.
    Han H.
    Binggong Xuebao/Acta Armamentarii, 2024, 45 (02): : 395 - 406
  • [38] Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L
    Bertsch, K. M.
    de Bellefon, G. Meric
    Kuehl, B.
    Thoma, D. J.
    ACTA MATERIALIA, 2020, 199 (199) : 19 - 33
  • [39] Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L
    Deepak Kumar
    Suyog Jhavar
    Abhinav Arya
    K. G. Prashanth
    Satyam Suwas
    International Journal of Fracture, 2022, 235 : 61 - 78
  • [40] Microstructure and Corrosion Resistance of Arc Additive Manufactured 316L Stainless Steel
    Yang, Ke
    Wang, Qiuyu
    Qu, Yang
    Jiang, Yongfeng
    Bao, Yefeng
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2020, 35 (05): : 930 - 936