Image response regression via deep neural networks

被引:2
作者
Zhang, Daiwei [1 ]
Li, Lexin [2 ]
Sripada, Chandra [3 ,4 ]
Kang, Jian [5 ,6 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA USA
[2] Univ Calif Berkeley, Dept Biostat & Epidemiol, Berkeley, CA USA
[3] Univ Michigan, Dept Psychiat, Ann Arbor, MI USA
[4] Univ Michigan, Dept Philosophy, Ann Arbor, MI USA
[5] Univ Michigan, Dept Biostat, Ann Arbor, MI USA
[6] Univ Michigan, Dept Biostat, 1415 Washington Hts, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
deep neural networks; functional magnetic resonance imaging; high-dimensional inference; non-parametric regression; tensor regression; varying coefficient models; FLUID INTELLIGENCE; WORKING-MEMORY; FRONTAL-LOBE; ORGANIZATION; CONVERGENCE; EFFICIENT; DIMENSIONALITY; APPROXIMATION; REGIONS; MODEL;
D O I
10.1093/jrsssb/qkad073
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Delineating associations between images and covariates is a central aim of imaging studies. To tackle this problem, we propose a novel non-parametric approach in the framework of spatially varying coefficient models, where the spatially varying functions are estimated through deep neural networks. Our method incorporates spatial smoothness, handles subject heterogeneity, and provides straightforward interpretations. It is also highly flexible and accurate, making it ideal for capturing complex association patterns. We establish estimation and selection consistency and derive asymptotic error bounds. We demonstrate the method's advantages through intensive simulations and analyses of two functional magnetic resonance imaging data sets.
引用
收藏
页码:1589 / 1614
页数:26
相关论文
共 80 条
[71]   Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau [J].
Wang, Aihui ;
Zeng, Xubin .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[72]   Fluid intelligence loss linked to restricted regions of damage within frontal and parietal cortex [J].
Woolgar, Alexandra ;
Parr, Alice ;
Cusack, Rhodri ;
Thompson, Russell ;
Nimmo-Smith, Ian ;
Torralva, Teresa ;
Roca, Maria ;
Antoun, Nagui ;
Manes, Facundo ;
Duncan, John .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (33) :14899-14902
[73]   GAN-based anomaly detection: A review [J].
Xia, Xuan ;
Pan, Xizhou ;
Li, Nan ;
He, Xing ;
Ma, Lin .
NEUROCOMPUTING, 2022, 493 :497-535
[74]   The organization of the human cerebral cortex estimated by intrinsic functional connectivity [J].
Yeo, B. T. Thomas ;
Krienen, Fenna M. ;
Sepulcre, Jorge ;
Sabuncu, Mert R. ;
Lashkari, Danial ;
Hollinshead, Marisa ;
Roffman, Joshua L. ;
Smoller, Jordan W. ;
Zoeller, Lilla ;
Polimeni, Jonathan R. ;
Fischl, Bruce ;
Liu, Hesheng ;
Buckner, Randy L. .
JOURNAL OF NEUROPHYSIOLOGY, 2011, 106 (03) :1125-1165
[75]   MULTIVARIATE SPLINE ESTIMATION AND INFERENCE FOR IMAGE-ON-SCALAR REGRESSION [J].
Yu, Shan ;
Wang, Guannan ;
Wang, Li ;
Yang, Lijian .
STATISTICA SINICA, 2021, 31 (03) :1463-1487
[76]  
Yue Y, 2010, STAT INTERFACE, V3, P3
[77]   Fronto-parietal network: flexible hub of cognitive control [J].
Zanto, Theodore P. ;
Gazzaley, Adam .
TRENDS IN COGNITIVE SCIENCES, 2013, 17 (12) :602-603
[78]  
Zhao P, 2006, J MACH LEARN RES, V7, P2541
[79]   Statistical Learning Methods for Neuroimaging Data Analysis with Applications [J].
Zhu, Hongtu ;
Li, Tengfei ;
Zhao, Bingxin .
ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, 2023, 6 :73-104
[80]   Spatially Varying Coefficient Model for Neuroimaging Data With Jump Discontinuities [J].
Zhu, Hongtu ;
Fan, Jianqing ;
Kong, Linglong .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (507) :1084-1098