Image response regression via deep neural networks

被引:2
作者
Zhang, Daiwei [1 ]
Li, Lexin [2 ]
Sripada, Chandra [3 ,4 ]
Kang, Jian [5 ,6 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA USA
[2] Univ Calif Berkeley, Dept Biostat & Epidemiol, Berkeley, CA USA
[3] Univ Michigan, Dept Psychiat, Ann Arbor, MI USA
[4] Univ Michigan, Dept Philosophy, Ann Arbor, MI USA
[5] Univ Michigan, Dept Biostat, Ann Arbor, MI USA
[6] Univ Michigan, Dept Biostat, 1415 Washington Hts, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
deep neural networks; functional magnetic resonance imaging; high-dimensional inference; non-parametric regression; tensor regression; varying coefficient models; FLUID INTELLIGENCE; WORKING-MEMORY; FRONTAL-LOBE; ORGANIZATION; CONVERGENCE; EFFICIENT; DIMENSIONALITY; APPROXIMATION; REGIONS; MODEL;
D O I
10.1093/jrsssb/qkad073
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Delineating associations between images and covariates is a central aim of imaging studies. To tackle this problem, we propose a novel non-parametric approach in the framework of spatially varying coefficient models, where the spatially varying functions are estimated through deep neural networks. Our method incorporates spatial smoothness, handles subject heterogeneity, and provides straightforward interpretations. It is also highly flexible and accurate, making it ideal for capturing complex association patterns. We establish estimation and selection consistency and derive asymptotic error bounds. We demonstrate the method's advantages through intensive simulations and analyses of two functional magnetic resonance imaging data sets.
引用
收藏
页码:1589 / 1614
页数:26
相关论文
共 80 条
[31]   Temporal stability of functional brain modules associated with human intelligence [J].
Hilger, Kirsten ;
Fukushima, Makoto ;
Sporns, Olaf ;
Fiebach, Christian J. .
HUMAN BRAIN MAPPING, 2020, 41 (02) :362-372
[32]   Efficient hubs in the intelligent brain: Nodal efficiency of hub regions in the salience network is associated with general intelligence [J].
Hilger, Kirsten ;
Ekman, Matthias ;
Fiebach, Christian J. ;
Basten, Ulrike .
INTELLIGENCE, 2017, 60 :10-25
[33]   Data-Driven Sparse Structure Selection for Deep Neural Networks [J].
Huang, Zehao ;
Wang, Naiyan .
COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 :317-334
[34]  
Imaizumi M, 2019, PR MACH LEARN RES, V89, P869
[35]   Gray matter correlates of creative potential: A latent variable voxel-based morphometry study [J].
Jauk, Emanuel ;
Neubauer, Aljoscha C. ;
Dunst, Beate ;
Fink, Andreas ;
Benedek, Mathias .
NEUROIMAGE, 2015, 111 :312-320
[36]   The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence [J].
Jung, Rex E. ;
Haier, Richard J. .
BEHAVIORAL AND BRAIN SCIENCES, 2007, 30 (02) :135-+
[37]   Reliability and stability challenges in ABCD task fMRI data [J].
Kennedy, James T. ;
Harms, Michael P. ;
Korucuoglu, Ozlem ;
Astafiev, Serguei, V ;
Barch, Deanna M. ;
Thompson, Wesley K. ;
Bjork, James M. ;
Anokhin, Andrey P. .
NEUROIMAGE, 2022, 252
[38]   Segment Anything [J].
Kirillov, Alexander ;
Mintun, Eric ;
Ravi, Nikhila ;
Mao, Hanzi ;
Rolland, Chloe ;
Gustafson, Laura ;
Xiao, Tete ;
Whitehead, Spencer ;
Berg, Alexander C. ;
Lo, Wan-Yen ;
Dolla'r, Piotr ;
Girshick, Ross .
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, :3992-4003
[39]   Estimation of a regression function on a manifold by fully connected deep neural networks [J].
Kohler, Michael ;
Langer, Sophie ;
Reif, Ulrich .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2023, 222 :160-181
[40]   ON THE RATE OF CONVERGENCE OF FULLY CONNECTED DEEP NEURAL NETWORK REGRESSION ESTIMATES [J].
Kohler, Michael ;
Langer, Sophie .
ANNALS OF STATISTICS, 2021, 49 (04) :2231-2249