Image response regression via deep neural networks

被引:2
作者
Zhang, Daiwei [1 ]
Li, Lexin [2 ]
Sripada, Chandra [3 ,4 ]
Kang, Jian [5 ,6 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA USA
[2] Univ Calif Berkeley, Dept Biostat & Epidemiol, Berkeley, CA USA
[3] Univ Michigan, Dept Psychiat, Ann Arbor, MI USA
[4] Univ Michigan, Dept Philosophy, Ann Arbor, MI USA
[5] Univ Michigan, Dept Biostat, Ann Arbor, MI USA
[6] Univ Michigan, Dept Biostat, 1415 Washington Hts, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
deep neural networks; functional magnetic resonance imaging; high-dimensional inference; non-parametric regression; tensor regression; varying coefficient models; FLUID INTELLIGENCE; WORKING-MEMORY; FRONTAL-LOBE; ORGANIZATION; CONVERGENCE; EFFICIENT; DIMENSIONALITY; APPROXIMATION; REGIONS; MODEL;
D O I
10.1093/jrsssb/qkad073
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Delineating associations between images and covariates is a central aim of imaging studies. To tackle this problem, we propose a novel non-parametric approach in the framework of spatially varying coefficient models, where the spatially varying functions are estimated through deep neural networks. Our method incorporates spatial smoothness, handles subject heterogeneity, and provides straightforward interpretations. It is also highly flexible and accurate, making it ideal for capturing complex association patterns. We establish estimation and selection consistency and derive asymptotic error bounds. We demonstrate the method's advantages through intensive simulations and analyses of two functional magnetic resonance imaging data sets.
引用
收藏
页码:1589 / 1614
页数:26
相关论文
共 80 条
  • [1] Function in the human connectome: Task-fMRI and individual differences in behavior
    Barch, Deanna M.
    Burgess, Gregory C.
    Harms, Michael P.
    Petersen, Steven E.
    Schlaggar, Bradley L.
    Corbetta, Maurizio
    Glasser, Matthew F.
    Curtiss, Sandra
    Dixit, Sachin
    Feldt, Cindy
    Nolan, Dan
    Bryant, Edward
    Hartley, Tucker
    Footer, Owen
    Bjork, James M.
    Poldrack, Russ
    Smith, Steve
    Johansen-Berg, Heidi
    Snyder, Abraham Z.
    Van Essen, David C.
    [J]. NEUROIMAGE, 2013, 80 : 169 - 189
  • [2] BARRON AR, 1994, MACH LEARN, V14, P115, DOI 10.1007/BF00993164
  • [3] Conditional Sure Independence Screening
    Barut, Emre
    Fan, Jianqing
    Verhasselt, Anneleen
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) : 1266 - 1277
  • [4] Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence
    Basten, Ulrike
    Hilger, Kirsten
    Fiebach, Christian J.
    [J]. INTELLIGENCE, 2015, 51 : 10 - 27
  • [5] ON DEEP LEARNING AS A REMEDY FOR THE CURSE OF DIMENSIONALITY IN NONPARAMETRIC REGRESSION
    Bauer, Benedikt
    Kohler, Michael
    [J]. ANNALS OF STATISTICS, 2019, 47 (04) : 2261 - 2285
  • [6] EIS - Efficient and Trainable Activation Functions for Better Accuracy and Performance
    Biswas, Koushik
    Kumar, Sandeep
    Banerjee, Shilpak
    Pandey, Ashish Kumar
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II, 2021, 12892 : 260 - 272
  • [7] Large-Scale Machine Learning with Stochastic Gradient Descent
    Bottou, Leon
    [J]. COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, : 177 - 186
  • [8] Validating running memory span: Measurement of working memory capacity and links with fluid intelligence
    Broadway, James M.
    Engle, Randall W.
    [J]. BEHAVIOR RESEARCH METHODS, 2010, 42 (02) : 563 - 570
  • [9] Varying-coefficient models for geospatial transfer learning
    Bussas, Matthias
    Sawade, Christoph
    Kuhn, Nicolas
    Scheffer, Tobias
    Landwehr, Niels
    [J]. MACHINE LEARNING, 2017, 106 (9-10) : 1419 - 1440
  • [10] The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites
    Casey, B. J.
    Cannonier, Tariq
    Conley, May I.
    Cohen, Alexandra O.
    Barch, Deanna M.
    Heitzeg, Mary M.
    Soules, Mary E.
    Teslovich, Theresa
    Dellarco, Danielle V.
    Garavan, Hugh
    Orr, Catherine A.
    Wager, Tor D.
    Banich, Marie T.
    Speer, Nicole K.
    Sutherland, Matthew T.
    Riedel, Michael C.
    Dick, Anthony S.
    Bjork, James M.
    Thomas, Kathleen M.
    Chaarani, Bader
    Mejia, Margie H.
    Hagler, Donald J., Jr.
    Cornejo, M. Daniela
    Sicat, Chelsea S.
    Harms, Michael P.
    Dosenbach, Nico U. F.
    Rosenberg, Monica
    Earl, Eric
    Bartsch, Hauke
    Watts, Richard
    Polimeni, Jonathan R.
    Kuperman, Joshua M.
    Fair, Damien A.
    Dale, Anders M.
    [J]. DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2018, 32 : 43 - 54