On the representation theory of the vertex algebra L-5/2(sl(4))

被引:3
作者
Adamovic, Drazen [1 ]
Perse, Ozren [1 ]
Vukorepa, Ivana [1 ]
机构
[1] Univ Zagreb, Dept Math, Fac Sci, Bijenicka 30, Zagreb, Croatia
关键词
Vertex algebras; affine Lie algebras; affine W-algebra; tensor categories; fusion rules; MODULAR INVARIANT REPRESENTATIONS; OPERATOR-ALGEBRAS; HIGHEST-WEIGHT; LIE-ALGEBRAS; AFFINE; FINITE;
D O I
10.1142/S0219199721501042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the representation theory of non-admissible simple affine vertex algebra L-5/2(sl(4)). We determine an explicit formula for the singular vector of conformal weight four in the universal affine vertex algebra V-5/2(sl(4)), and show that it generates the maximal ideal in V-5/2(sl(4)). We classify irreducible L-5/2(sl(4))-modules in the category O, and determine the fusion rules between irreducible modules in the category of ordinary modules KL-5/2. It turns out that this fusion algebra is isomorphic to the fusion algebra of KL-1. We also prove that KL-5/2 is a semi-simple, rigid braided tensor category. In our proofs, we use the notion of collapsing level for the affine W-algebra, and the properties of conformal embedding gl(4) (sic) sl(5) at level k = -5/2 from D. Adamovic et al. [Finite vs infinite decompositions in conformal embeddings, Comm. Math. Phys. 348 (2016) 445-473.]. We show that k = -5/2 is a collapsing level with respect to the subregular nilpotent element fsubreg, meaning that the simple quotient of the affine W-algebra W-5/2(sl(4), fsubreg) is isomorphic to the Heisenberg vertex algebra M-J(1). We prove certain results on vanishing and non-vanishing of cohomology for the quantum Hamiltonian reduction functor H-fsubreg. It turns out that the properties of H-fsubreg are more subtle than in the case of minimal reduction.
引用
收藏
页数:42
相关论文
共 45 条
[1]  
Adamovic D., 2020, BRIEF BIOINFORM, V360, P50
[2]  
Adamovic D., 1996, Representations of vertex algebras associated to symplectic affine Lie algebra at half-integer levels
[3]   Representations of certain non-rational vertex operator algebras of affine type [J].
Adamovic, Drazen ;
Perse, Ozren .
JOURNAL OF ALGEBRA, 2008, 319 (06) :2434-2450
[4]  
Adamovic D, 2021, COMMUN MATH PHYS, V383, P1207, DOI 10.1007/s00220-021-03950-1
[5]   An Application of Collapsing Levels to the Representation Theory of Affine Vertex Algebras [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo ;
Perse, Ozren .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (13) :4103-4143
[6]   On fusion rules and intertwining operators for the Weyl vertex algebra [J].
Adamovic, Drazen ;
Pedic, Veronika .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)
[7]   Conformal embeddings of affine vertex algebras in minimal W-algebras I: Structural results [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moeseneder ;
Papi, Paolo ;
Perse, Ozren .
JOURNAL OF ALGEBRA, 2018, 500 :117-152
[8]   Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo ;
Perse, Ozren .
JAPANESE JOURNAL OF MATHEMATICS, 2017, 12 (02) :261-315
[9]   Finite vs. Infinite Decompositions in Conformal Embeddings [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo ;
Perse, Ozren .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 348 (02) :445-473
[10]  
Adamovic D, 1995, MATH RES LETT, V2, P563