On the representation theory of the vertex algebra L-5/2(sl(4))

被引:1
作者
Adamovic, Drazen [1 ]
Perse, Ozren [1 ]
Vukorepa, Ivana [1 ]
机构
[1] Univ Zagreb, Dept Math, Fac Sci, Bijenicka 30, Zagreb, Croatia
关键词
Vertex algebras; affine Lie algebras; affine W-algebra; tensor categories; fusion rules; MODULAR INVARIANT REPRESENTATIONS; OPERATOR-ALGEBRAS; HIGHEST-WEIGHT; LIE-ALGEBRAS; AFFINE; FINITE;
D O I
10.1142/S0219199721501042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the representation theory of non-admissible simple affine vertex algebra L-5/2(sl(4)). We determine an explicit formula for the singular vector of conformal weight four in the universal affine vertex algebra V-5/2(sl(4)), and show that it generates the maximal ideal in V-5/2(sl(4)). We classify irreducible L-5/2(sl(4))-modules in the category O, and determine the fusion rules between irreducible modules in the category of ordinary modules KL-5/2. It turns out that this fusion algebra is isomorphic to the fusion algebra of KL-1. We also prove that KL-5/2 is a semi-simple, rigid braided tensor category. In our proofs, we use the notion of collapsing level for the affine W-algebra, and the properties of conformal embedding gl(4) (sic) sl(5) at level k = -5/2 from D. Adamovic et al. [Finite vs infinite decompositions in conformal embeddings, Comm. Math. Phys. 348 (2016) 445-473.]. We show that k = -5/2 is a collapsing level with respect to the subregular nilpotent element fsubreg, meaning that the simple quotient of the affine W-algebra W-5/2(sl(4), fsubreg) is isomorphic to the Heisenberg vertex algebra M-J(1). We prove certain results on vanishing and non-vanishing of cohomology for the quantum Hamiltonian reduction functor H-fsubreg. It turns out that the properties of H-fsubreg are more subtle than in the case of minimal reduction.
引用
收藏
页数:42
相关论文
共 45 条
  • [1] Adamovic D., 2020, BRIEF BIOINFORM, V360, P50
  • [2] Adamovic D., 1996, THESIS U ZAGREB
  • [3] Representations of certain non-rational vertex operator algebras of affine type
    Adamovic, Drazen
    Perse, Ozren
    [J]. JOURNAL OF ALGEBRA, 2008, 319 (06) : 2434 - 2450
  • [4] Adamovic D, 2021, COMMUN MATH PHYS, V383, P1207, DOI 10.1007/s00220-021-03950-1
  • [5] An Application of Collapsing Levels to the Representation Theory of Affine Vertex Algebras
    Adamovic, Drazen
    Kac, Victor G.
    Frajria, Pierluigi Moseneder
    Papi, Paolo
    Perse, Ozren
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (13) : 4103 - 4143
  • [6] On fusion rules and intertwining operators for the Weyl vertex algebra
    Adamovic, Drazen
    Pedic, Veronika
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)
  • [7] Conformal embeddings of affine vertex algebras in minimal W-algebras I: Structural results
    Adamovic, Drazen
    Kac, Victor G.
    Frajria, Pierluigi Moeseneder
    Papi, Paolo
    Perse, Ozren
    [J]. JOURNAL OF ALGEBRA, 2018, 500 : 117 - 152
  • [8] Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions
    Adamovic, Drazen
    Kac, Victor G.
    Frajria, Pierluigi Moseneder
    Papi, Paolo
    Perse, Ozren
    [J]. JAPANESE JOURNAL OF MATHEMATICS, 2017, 12 (02): : 261 - 315
  • [9] Finite vs. Infinite Decompositions in Conformal Embeddings
    Adamovic, Drazen
    Kac, Victor G.
    Frajria, Pierluigi Moseneder
    Papi, Paolo
    Perse, Ozren
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 348 (02) : 445 - 473
  • [10] Adamovic D, 1995, MATH RES LETT, V2, P563